中国激光, 2015, 42 (7): 0703004, 网络出版: 2022-09-24   

热输入对纳米析出强化钢激光焊接接头组织及纳米力学性能的影响

Effect of Heat Input on Weld Joints Microstructure and Nano Mechanical Properties of Nano Precipitation Hardening Steel
作者单位
1 安徽工业大学冶金工程学院, 安徽 马鞍山 243002
2 苏州大学沙钢钢铁学院, 江苏 苏州 215201
3 苏州大学机电工程学院激光加工中心, 江苏 苏州 215021
引用该论文

王海生, 王卫, 王晓南, 朱广江, 陈长军, 张敏, 朱国辉. 热输入对纳米析出强化钢激光焊接接头组织及纳米力学性能的影响[J]. 中国激光, 2015, 42(7): 0703004.

Wang Haisheng, Wang Wei, Wang Xiaonan, Zhu Guangjiang, Chen Changjun, Zhang Min, Zhu Guohui. Effect of Heat Input on Weld Joints Microstructure and Nano Mechanical Properties of Nano Precipitation Hardening Steel[J]. Chinese Journal of Lasers, 2015, 42(7): 0703004.

参考文献

[1] Peng Yun, Peng Xingna, Zhang Xiaomu, et al.. Microstructure and mechanical properties of GMAW weld metal of 890MPa class steel[J]. Journal of Iron and Steel Research, 2014, 21(5): 539-544.

[2] L karlsson, H K D H Bhadesshia. The latest trend of welding materials in Europe[J]. Journal of the Japan Welding Society, 2011, 80(1): 110-119.

[3] Kang Yonglin, Han Qihang, Zhao Ximeng, et al.. Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium[J]. Materials and Design, 2013, 44: 331-339.

[4] R D K Misra, H Nathani, J E Hartmann, et al.. Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel[J]. Materials Science and Engineering A, 2005, 394(1-2): 339–352.

[5] Wang Xiaonan, Du Linxiu, Xie Hui, et al.. Effect of deformation on continuous cooling phase transformation behavior of 780 MPa Nb-Ti ultra-high strength steel[J]. Steel Research International, 2011, 82(12): 1417-1424.

[6] Mikhail Sokolov, Antti Salminen, Mikhail Kuznetsov. Laser welding and weld hardness analysis of thick section S355 structural steel[J]. Materials and Design, 2011, 32(10): 5127-5131.

[7] Zhao Lin, Chen Wuzhu, Zhang Xudong. Microstructure and mehanical properties of laser welded heat affected zone in new ultra low carbon bainitic steel[J]. Chinese J Lasers, 2006, 33(3): 408-412.

[8] G Y Perez-Medina, H F Lopez, P Zambrano, et al.. Microstructural effects on the mechanical integrity of a TRIP-800 steel welded by laser-CO2 process[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 602-612.

[9] Li Yaling, Huang Jian, Gao Zhiguo, et al.. Structure and properties of high power laser welding of high strength steel B450 LAD for vehicles[J]. Chinese J Lasers, 2008, 35(12): 2047-2051.

[10] Wang Xiaonan, Chen Changjun, Zhu Guangjiang, et al.. Research progress on laser- arc hybrid welding of steel[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030008.

[11] Sun Qian, Wang Xiaonan, Zhang Shunhu, et al.. Effect of microstructure on fracture toughness of new type hot-rolled nano-scale precipitation strengthening steel[J]. Acta Metallurgica Sinica, 2013, 49(12): 1501-1507.

[12] H N Moosavy, M R Aboutalebi, S H Seyedein. An analytical algorithm to predict weldability of precipitation-strengthened nickelbase superalloys[J]. Journal of Materials Research and Technology, 2012, 212(11): 2210-2218.

[13] W C Oliver, G M Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.

[14] Zhu Lihong. Study on Effect of Laser Welding Heat Input on Microstructures and Properties of Stainless Steel Joints[D]. Changchun: Jilin University, 2014.

[15] Zuo Zhuchuan. Laser Processing of High Strength Aluminum Alloy[M]. Beijing: National Defence Industry Press, 2002: 25-29.

[16] Liu Huijie. Welding Metallurgy and Welding[M]. Haerbin: Machinery Industry Press, 2007: 85-126.

[17] Wang Wenquan, Ma Kai, Sun Daqian, et al.. Microstructure and properties of CO2 laser welded 600 MPa DP steel[J]. Transactions of the China Welding Institution, 2010, 31(9): 25-28.

[18] Liu Qibin, Bai Lifeng. Microstructure and properties of ultra- high strength steel 30CrMnSiNi2A by laser welding[J]. Chinese J Lasers, 2009, 36(8): 2182-2186.

[19] Niu Jitai. Physical Simulation in Materials and Hot-Working[M]. Beijing: National Defence Industry Press, 1999: 77-83.

[20] Adam Grajcar, Maciej Rozanski, Sebastian Stano. Effect of heat input on microstructure and hardness distribution of laser welded Si-Al TRIP-type steel[J]. Advances in Materials Science and Engineering, 2014: 974182.

[21] Ren Mingxing, Li Bangsheng, Yang Chuang, et al.. Hardness and elastic modulus of microcastings by nanoindentation[J]. The Chinese Journal of Nonferrous Metals, 2008 ,18(2): 231-236.

[22] Wang Junsheng. Infiuence of alloying elements on the elastic modulus[J]. Chinese J Rare Metals, 1979, (4): 1-11.

[23] Lan Liangyun, Qiu Chunlin, Zhao Dewen, et al.. Structure and micromechanical properties of a weld joint using steel with low sensitivity to weld cracking[J]. Journal of Northeastern University (Natural Science), 2011, 32(4): 505-508.

王海生, 王卫, 王晓南, 朱广江, 陈长军, 张敏, 朱国辉. 热输入对纳米析出强化钢激光焊接接头组织及纳米力学性能的影响[J]. 中国激光, 2015, 42(7): 0703004. Wang Haisheng, Wang Wei, Wang Xiaonan, Zhu Guangjiang, Chen Changjun, Zhang Min, Zhu Guohui. Effect of Heat Input on Weld Joints Microstructure and Nano Mechanical Properties of Nano Precipitation Hardening Steel[J]. Chinese Journal of Lasers, 2015, 42(7): 0703004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!