激光与光电子学进展, 2019, 56 (17): 170610, 网络出版: 2019-09-05   

金属纳米晶复合光纤的制造和应用 下载: 1658次特邀综述

Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers
作者单位
1 华南理工大学材料科学与工程学院发光材料与器件国家重点实验室, 广东 广州 510640
2 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027
引用该论文

马志军, 江博凡, 许琦, 邱建荣. 金属纳米晶复合光纤的制造和应用[J]. 激光与光电子学进展, 2019, 56(17): 170610.

Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610.

参考文献

[1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151-1158.

[2] Rowe H L, Shephard J D, Furniss D, et al. The application of the mid-infrared spectral region in medical surgery: chalcogenide glass optical fibre for 10.6 μm laser transmission[J]. Proceedings of SPIE, 2008, 6852: 685208.

[3] CasparyR, SchutzS, MohlS, et al. Polymer optical fiber amplifiers[C]∥14th International Confrence on Transparent Optical Networks(ICTON), July 2-5, 2012, Coventry, UK. New York: IEEE, 2012: 12908201.

[4] Knight J C, Birks T A. Russell P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding: errata[J]. Optics Letters, 1997, 22(7): 484-485.

[5] Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science, 2004, 306(5698): 1002-1005.

[6] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706.

[7] Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3): 783-826.

[8] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 2004, 104(1): 293-346.

[9] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11): 641-648.

[10] Polwart E, Keir R L, Davidson C M, et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles[J]. Applied Spectroscopy, 2000, 54(4): 522-527.

[11] Andrade G F S, Fan M K, Brolo A G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing[J]. Biosensors and Bioelectronics, 2010, 25(10): 2270-2275.

[12] Cennamo N. D'Agostino G, Donà A, et al. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation[J]. Sensors, 2013, 13(11): 14676-14686.

[13] Chen H, Tian F, Chi J M, et al. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing[J]. Optics Letters, 2014, 39(20): 5822-5825.

[14] Spasopoulos D, Kaziannis S, Danakas S, et al. LSPR based optical fiber sensors treated with nanosecond laser irradiation for refractive index sensing[J]. Sensors and Actuators B: Chemical, 2018, 256: 359-366.

[15] Cox F M, Argyros A. Large M C J, et al. Surface enhanced Raman scattering in a hollow core microstructured optical fiber[J]. Optics Express, 2007, 15(21): 13675-13681.

[16] Han Y, Tan S L. Oo M K K, et al. Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers[J]. Advanced Materials, 2010, 22(24): 2647-2651.

[17] Siarkowska A, Chychłowski M, Budaszewski D, et al. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles[J]. Beilstein Journal of Nanotechnology, 2017, 8: 2790-2801.

[18] Guo Y, Song B B, Huang W, et al. LSPR sensor employing side-polished suspend-core microstructured optical fiber with a silver nanorod[J]. IEEE Sensors Journal, 2019, 19(3): 956-961.

[19] Sebastian S, Ajina C. Vallabhan C P G, et al. Fabrication and photostability of rhodamine-6G gold nanoparticle doped polymer optical fiber[J]. Chinese Physics Letters, 2013, 30(11): 118101.

[20] Sebastian S, Linslal L, Vallabhan G, et al. Random lasing with enhanced photostability of silver nanoparticle doped polymer optical fiber laser[J]. Laser Physics Letters, 2014, 11(5): 055108.

[21] Hu Z J, Liang Y Y, Gao P F, et al. Random lasing from dye doped polymer optical fiber containing gold nanoparticles[J]. Journal of Optics, 2015, 17(12): 125403.

[22] White D J, Stoddart P R. Nanostructured optical fiber with surface-enhanced Raman scattering functionality[J]. Optics Letters, 2005, 30(6): 598-600.

[23] Guo H Q, Tao S Q. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing[J]. Sensors and Actuators B: Chemical, 2007, 123(1): 578-582.

[24] Zheng X L, Guo D W, Shao Y L, et al. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor[J]. Langmuir, 2008, 24(8): 4394-4398.

[25] Ma X D, Huo H B, Wang W H, et al. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser[J]. Sensors, 2010, 10(12): 11064-11071.

[26] Andrade G F S, Hayashi J G, Rahman M M, et al. . Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips[J]. Plasmonics, 2013, 8(2): 1113-1121.

[27] Cao J, Zhao D, Lei X, et al. One-pot hydrothermal synthesis of silver nanoplates on optical fiber tip for surface-enhanced Raman scattering[J]. Applied Physics Letters, 2014, 104(20): 201906.

[28] Milenko K, Fuglerud S S, Kjeldby S B, et al. Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe[J]. Optics Letters, 2018, 43(24): 6029-6032.

[29] Kim H M, Uh M, Jeong D H, et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber[J]. Sensors and Actuators B: Chemical, 2019, 280: 183-191.

[30] Amezcua-Correa A, Yang J, Finlayson C E, et al. Surface-enhanced Raman scattering using microstructured optical fiber substrates[J]. Advanced Functional Materials, 2007, 17(13): 2024-2030.

[31] Yang X H, Wang L L. Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing[J]. Optics Communications, 2007, 280(2): 368-373.

[32] Peacock A C, Amezcua-Correa A, Yang J X, et al. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions[J]. Applied Physics Letters, 2008, 92(14): 141113.

[33] Lin A X, Liu X M, Watekar P R, et al. Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity[J]. Applied Physics Letters, 2008, 93(2): 021901.

[34] Chattopadhyay R, Bhadra S K. Dispersion tailoring in single mode optical fiber by doping silver nanoparticle[J]. Applied Physics B, 2013, 111(3): 399-406.

[35] Sjödin N, Fokine M, et al. . Fabrication and optical characterization of silica optical fibers containing gold nanoparticles[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 370-375.

[36] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 2001, 13(18): 1389-1393.

[37] Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods[J]. Journal of the American Chemical Society, 2002, 124(48): 14316-14317.

[38] Ye X C, Gao Y Z, Chen J, et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures[J]. Nano Letters, 2013, 13(5): 2163-2171.

[39] Chang H H, Murphy C J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm[J]. Chemistry of Materials, 2018, 30(4): 1427-1435.

[40] Skrabalak S E, Chen J Y, Sun Y G, et al. Gold nanocages: synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.

[41] Kuttner C, Mayer M, Dulle M, et al. Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11152-11163.

[42] Xi W J, Haes A J. Elucidation of HEPES affinity to and structure on gold nanostars[J]. Journal of the American Chemical Society, 2019, 141(9): 4034-4042.

[43] Pohling C, Campbell J L, Larson T A, et al. Smart-dust-nanorice for enhancement of endogenous Raman signal, contrast in photoacoustic imaging, and T2-shortening in magnetic resonance imaging[J]. Small, 2018, 14(19): 1703683.

[44] Singh P. König T A F, Jaiswal A. NIR-active plasmonic gold nanocapsules synthesized using thermally induced seed twinning for surface-enhanced Raman scattering applications[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39380-39390.

[45] Liang H Y, Wang W Z, Huang Y Z, et al. Controlled synthesis of uniform silver nanospheres[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7427-7431.

[46] Hu J Q, Chen Q, Xie Z X, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires[J]. Advanced Functional Materials, 2004, 14(2): 183-189.

[47] Huang Z L, Lei X, Liu Y, et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17247-17254.

[48] Lepinay S, Staff A, Ianoul A, et al. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles[J]. Biosensors and Bioelectronics, 2014, 52: 337-344.

[49] Yi J, Jao C Y. Kandas I L N, et al. Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres[J]. Applied Physics Letters, 2012, 100(15): 153107.

[50] Shao Y L, Xu S P, Zheng X L, et al. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer[J]. Sensors, 2010, 10(4): 3585-3596.

[51] Yap F L, Thoniyot P, Krishnan S, et al. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers[J]. ACS Nano, 2012, 6(3): 2056-2070.

[52] Luo J, Yao J, Lu Y G, et al. A silver nanoparticle-modified evanescent field optical fiber sensor for methylene blue detection[J]. Sensors, 2013, 13(3): 3986-3997.

[53] Cheng S F, Chau L K. Colloidal gold-modified optical fiber for chemical and biochemical sensing[J]. Analytical Chemistry, 2003, 75(1): 16-21.

[54] Huang K T, Lin T J, Hsu M H. Determination of cyclic GMP concentration using a gold nanoparticle-modified optical fiber[J]. Biosensors and Bioelectronics, 2010, 26(1): 11-15.

[55] Rithesh Raj D, Prasanth S, Sudarsanakumar C. Development of LSPR-based optical fiber dopamine sensor using L-tyrosine-capped silver nanoparticles and its nonlinear optical properties[J]. Plasmonics, 2017, 12(4): 1227-1234.

[56] Rivero P J, Urrutia A, Goicoechea J, et al. Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles[J]. Sensors and Actuators B: Chemical, 2012, 173: 244-249.

[57] Muri H I, Hjelme D R. LSPR coupling and distribution of interparticle distances between nanoparticles in hydrogel on optical fiber end face[J]. Sensors, 2017, 17(12): 2723.

[58] Muri H I, Bano A, Hjelme D R. LSPR and interferometric sensor modalities combined using a double-clad optical fiber[J]. Sensors, 2018, 18(1): 187.

[59] Urrutia A, Goicoechea J, Rivero P J, et al. Optical fiber sensors based on gold nanorods embedded in polymeric thin films[J]. Sensors and Actuators B: Chemical, 2018, 255: 2105-2112.

[60] Smythe E J, Dickey M D, Bao J M, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Letters, 2009, 9(3): 1132-1138.

[61] Lin Y B, Zou Y, Mo Y Y, et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing[J]. Sensors, 2010, 10(10): 9397-9406.

[62] Cennamo N, Donà A, Pallavicini P, et al. Sensitive detection of 2, 4, 6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars[J]. Sensors and Actuators B: Chemical, 2015, 208: 291-298.

[63] Wieduwilt T, Zeisberger M, Thiele M, et al. Gold-reinforced silver nanoprisms on optical fiber tapers: a new base for high precision sensing[J]. APL Photonics, 2016, 1(6): 066102.

[64] Hutter T, Elliott S R, Mahajan S. Optical fibre-tip probes for SERS: numerical study for design considerations[J]. Optics Express, 2018, 26(12): 15539-15550.

[65] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.

[66] Knight J C, Birks T A. Russell P St J, et al. Properties of photonic crystal fiber and the effective index model[J]. Journal of the Optical Society of America A, 1998, 15(3): 748-752.

[67] Konorov S O, Zheltikov A M, Scalora M. Photonic-crystal fiber as a multifunctional optical sensor and sample collector[J]. Optics Express, 2005, 13(9): 3454-3459.

[68] Guo J J, Luo Y Q, Yang C X, et al. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes[J]. Optics Letters, 2018, 43(21): 5443-5446.

[69] Li S T, Wang L, Zhai T R, et al. Plasmonic random lasing in polymer fiber[J]. Optics Express, 2016, 24(12): 12748-12754.

[70] Dhawan A, Muth J F. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix[J]. Nanotechnology, 2006, 17(10): 2504-2511.

[71] García J A, Monzón-Hernández D, Manríquez J, et al. One step method to attach gold nanoparticles onto the surface of an optical fiber used for refractive index sensing[J]. Optical Materials, 2016, 51: 208-212.

[72] 窦心怡, 张洁, 陈思孟, 等. 锥形光纤SERS探针的工艺优化和拉曼光谱增强实验[J]. 光学学报, 2018, 38(5): 0530001.

    Dou X Y, Zhang J, Chen S M, et al. Process optimization and Raman spectroscopy enhancement experiment of multimode tapered fiber SERS probe[J]. Acta Optica Sinica, 2018, 38(5): 0530001.

[73] Lin A X, Liu X M, Watekar P R, et al. All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals[J]. Optics Letters, 2009, 34(6): 791-793.

[74] Halder A, Chattopadhyay R, Majumder S, et al. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber[J]. Applied Physics Letters, 2015, 106(1): 011101.

[75] Fang Z J, Zheng S P, Peng W C, et al. Fabrication and characterization of glass-ceramic fiber-containing Cr 3+ -doped ZnAl2O4 nanocrystals [J]. Journal of the American Ceramic Society, 2015, 98(9): 2772-2775.

[76] Fang Z J, Zheng S P, Peng W C, et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment [J]. Optics Express, 2015, 23(22): 28258-28263.

[77] Fang Z J, Zheng S P, Peng W C, et al. Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method[J]. Journal of the American Ceramic Society, 2016, 99(3): 856-859.

[78] Peng W C, Fang Z J, Ma Z J, et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb 3+-Er 3+codoped CaF2 nanocrystals [J]. Nanotechnology, 2016, 27(40): 405203.

[79] Fang Z J, Xiao X S, Wang X, et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Scientific Reports, 2017, 7: 44456.

[80] Huang X J, Fang Z J, Kang S L, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. Journal of Materials Chemistry C, 2017, 5(31): 7927-7934.

[81] Li M S, Yang C X. Laser-induced silver nanoparticles deposited on optical fiber core for surface-enhanced Raman scattering[J]. Chinese Physics Letters, 2010, 27(4): 044202.

[82] Liu T, Xiao X S, Yang C X. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering[J]. Langmuir, 2011, 27(8): 4623-4626.

[83] 范群芳, 刘晔, 曹杰, 等. 利用激光诱导化学沉积法制备锥形光纤SERS探针[J]. 中国激光, 2014, 41(3): 0310001.

    Fan Q F, Liu Y, Cao J, et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method[J]. Chinese Journal of Lasers, 2014, 41(3): 0310001.

[84] Chen I C, Lin S S, Lin T J, et al. Detection of hydrofluoric acid by a SiO2 sol-gel coating fiber-optic probe based on reflection-based localized surface plasmon resonance[J]. Sensors, 2011, 11(2): 1907-1923.

[85] Vasconcelos H, Jorge P A S, et al. . Plasmonic optical fiber sensor based on double step growth of gold nano-islands[J]. Sensors, 2018, 18(4): 1267.

[86] Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513.

[87] Hache F, Ricard D, Flytzanis C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects[J]. Journal of the Optical Society of America B, 1986, 3(12): 1647-1655.

[88] Ju S, Nguyen V L, Watekar P R, et al. Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(11): 3555-3558.

[89] Bigot L, el Hamzaoui H, le Rouge A, et al. . Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber[J]. Optics Express, 2011, 19(20): 19061-19066.

[90] HalderA, Paul MC, DasS, et al. Experimental study of metal nano-particle doped optical fiber and its unique spectral property[C]∥International Conference on Fibre Optics and Photonics, December 9-12, 2012, Chennai, India. Washington, D C: OSA, 2012: M3B. 4.

[91] Sugimoto N, Kanbara H, Fujiwara S, et al. Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses[J]. Journal of the Optical Society of America B, 1999, 16(11): 1904-1908.

[92] Singh S P, Karmakar B. Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag∶bismuth glass nanocomposites[J]. Plasmonics, 2011, 6(3): 457-467.

[93] Chen F F, Cheng J W, Dai S X, et al. Z-scan and optical Kerr shutter studies of silver nanoparticles embedded bismuthate glasses[J]. Journal of Non-Crystalline Solids, 2013, 377: 151-154.

[94] Chen F F, Cheng J W, Dai S X, et al. Third-order optical nonlinearity at 800 and 1300 nm in bismuthate glasses doped with silver nanoparticles[J]. Optics Express, 2014, 22(11): 13438-13447.

[95] Chen F F, Cheng J W, Dai S X, et al. Formation and third-order optical nonlinearities of silver nano-crystals embedded bismuthate glasses[J]. Materials Research Bulletin, 2013, 48(11): 4667-4672.

[96] Tu M H, Sun T. Grattan K T V. Optimization of gold-nanoparticle-based optical fibre surface plasmon resonance (SPR)-based sensors[J]. Sensors and Actuators B: Chemical, 2012, 164(1): 43-53.

[97] Ortega-Mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C, et al. . Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end[J]. Sensors, 2014, 14(10): 18701-18710.

[98] Tu M H, Sun T. Grattan K T V. LSPR optical fibre sensors based on hollow gold nanostructures[J]. Sensors and Actuators B: Chemical, 2014, 191: 37-44.

[99] Gowri A. Sai V V R. Development of LSPR based U-bent plastic optical fiber sensors[J]. Sensors and Actuators B: Chemical, 2016, 230: 536-543.

[100] Ohodnicki P R. Jr, Buric M P, Brown T D, et al. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures[J]. Nanoscale, 2013, 5(19): 9030-9039.

[101] Luan N N, Wang R, Lü W H, et al. Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires[J]. Sensors, 2014, 14(9): 16035-16045.

[102] Wang P, Zhang L, Xia Y N, et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing[J]. Nano Letters, 2012, 12(6): 3145-3150.

[103] Mullen K I, Carron K T. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes[J]. Analytical Chemistry, 1991, 63(19): 2196-2199.

[104] Su L, Lee T H, Elliott S R. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper[J]. Optics Letters, 2009, 34(17): 2685-2687.

[105] 李明, 李凯伟, 代方, 等. 基于金纳米棒放大的高灵敏度纳米光纤生化传感器[J]. 光学学报, 2015, 35(12): 1206001.

    Li M, Li K W, Dai F, et al. Highly sensitive optical nanofiber sensor based on gold nanorod amplification[J]. Acta Optica Sinica, 2015, 35(12): 1206001.

[106] Yang X, Gu C, Qian F, et al. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers[J]. Analytical Chemistry, 2011, 83(15): 5888-5894.

[107] Danny C G, Subrahmanyam A. Sai V V R. Development of plasmonic U-bent plastic optical fiber probes for surface enhanced Raman scattering based biosensing[J]. Journal of Raman Spectroscopy, 2018, 49(10): 1607-1616.

[108] Wang C, Zeng L H, Li Z, et al. Review of optical fibre probes for enhanced Raman sensing[J]. Journal of Raman Spectroscopy, 2017, 48(8): 1040-1055.

[109] Hu D J J, Ho H P. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications[J]. Advances in Optics and Photonics, 2017, 9(2): 257-314.

[110] Stoddart P R, White D J. Optical fibre SERS sensors[J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1761-1774.

[111] Wang A X, Kong X M. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering[J]. Materials, 2015, 8(6): 3024-3052.

[112] Kang H, Buchman J T, Rodriguez R S, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities[J]. Chemical Reviews, 2019, 119(1): 664-699.

马志军, 江博凡, 许琦, 邱建荣. 金属纳米晶复合光纤的制造和应用[J]. 激光与光电子学进展, 2019, 56(17): 170610. Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!