Photonics Research, 2020, 8 (8): 08001342, Published Online: Jul. 23, 2020   

Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators Download: 613次

Author Affiliations
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Center for Micro and Nanoscale Research and Fabrication, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
4 e-mail: clzou321@ustc.edu.cn
Copy Citation Text

Shuai Wan, Rui Niu, Zheng-Yu Wang, Jin-Lan Peng, Ming Li, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators[J]. Photonics Research, 2020, 8(8): 08001342.

References

[1] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361: eaan8083.

[2] AkhmedievN.AnkiewiczA., Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).

[3] S. Wabnitz. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett., 1993, 18: 601-603.

[4] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, M. Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics, 2010, 4: 471-476.

[5] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2: 1078-1085.

[6] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer, M. L. Gorodetsky, T. J. Kippenberg. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 2016, 351: 357-360.

[7] X. Xue, X. Zheng, B. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 2019, 13: 616-622.

[8] J. Peng, S. Boscolo, Z. Zhao, H. Zeng. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv., 2019, 5: eaax1110.

[9] K. J. Vahala. Optical microcavities. Nature, 2003, 424: 839-846.

[10] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8: 145-152.

[11] H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu, C. W. Wong. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 2019, 8: 1.

[12] H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi, Y.-F. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 2020, 11: 2336.

[13] W. Wang, W. Zhang, Z. Lu, S. T. Chu, B. E. Little, Q. Yang, L. Wang, W. Zhao. Self-locked orthogonal polarized dual comb in a microresonator. Photon. Res., 2018, 6: 363-367.

[14] X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source invited. Photon. Res., 2018, 6: B30-B36.

[15] J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, M. Xiao. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photon. Res., 2019, 7: 573-578.

[16] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450: 1214-1217.

[17] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 2012, 6: 84-92.

[18] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546: 274-279.

[19] F.-X. Wang, W. Wang, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang, W. Zhao, Z.-F. Han, G.-C. Guo, W. Chen. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 2020, 14: 1900190.

[20] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 2018, 359: 884-887.

[21] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359: 887-891.

[22] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354: 600-603.

[23] A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, M. Lipson. On-chip dual-comb source for spectroscopy. Sci. Adv., 2018, 4: e1701858.

[24] W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 2015, 6: 7957.

[25] W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, T. J. Kippenberg. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 2019, 122: 013902.

[26] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, M. T. Hummon. Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6: 680-685.

[27] M.-G. Suh, X. Yi, Y.-H. Lai, S. Leifer, I. S. Grudinin, G. Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang, D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, K. Vahala. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 2019, 13: 25-30.

[28] E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, T. Herr. A microphotonic astrocomb. Nat. Photonics, 2019, 13: 31-35.

[29] X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 2015, 9: 594-600.

[30] M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, T. J. Kippenberg. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 2016, 116: 103902.

[31] C. Bao, J. A. Jaramillo-Villegas, Y. Xuan, D. E. Leaird, M. Qi, A. M. Weiner. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 2016, 117: 163901.

[32] M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, A. L. Gaeta. Breather soliton dynamics in microresonators. Nat. Commun., 2017, 8: 145969.

[33] E. Lucas, M. Karpov, H. Guo, M. Gorodetsky, T. J. Kippenberg. Breathing dissipative solitons in optical microresonators. Nat. Commun., 2017, 8: 736.

[34] X. Yi, Q.-F. Yang, K. Y. Yang, K. Vahala. Imaging soliton dynamics in optical microcavities. Nat. Commun., 2018, 9: 3565.

[35] E. Lucas, G. Lihachev, R. Bouchand, N. G. Pavlov, A. S. Raja, M. Karpov, M. L. Gorodetsky, T. J. Kippenberg. Spatial multiplexing of soliton microcombs. Nat. Photonics, 2018, 12: 699-705.

[36] H. Guo, E. Lucas, M. H. Pfeiffer, M. Karpov, M. Anderson, J. Liu, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Intermode breather solitons in optical microresonators. Phys. Rev. X, 2017, 7: 041055.

[37] C. Bao, Y. Xuan, C. Wang, A. Fülöp, D. E. Leaird, M. Qi, A. M. Weiner. Observation of breathing dark pulses in normal dispersion optical microresonators. Phys. Rev. Lett., 2018, 121: 257401.

[38] D. C. Cole, S. B. Papp. Subharmonic entrainment of Kerr breather solitons. Phys. Rev. Lett., 2019, 123: 173904.

[39] LiaoP.ZouK.BaoC.KordtsA.KarpovM.PfeifferM. H. P.ZhangL.CaoY.AlmaimanA.AlishashiF.Mohajerin-AriaeiA.FallahpourA.TurM.KippenbergT. J.WillnerA. E., “Chip-scale dual-comb source using a breathing soliton with an increased resolution,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper JTh5A.4.

[40] K. Luke, A. Dutt, C. B. Poitras, M. Lipson. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express, 2013, 21: 22829-22833.

[41] M. H. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 2016, 3: 20-25.

[42] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3: 1171-1180.

[43] K. Luke, Y. Okawachi, M. R. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 2015, 40: 4823-4826.

[44] M. H. Pfeiffer, C. Herkommer, L. Jumqiu, T. Morais, M. Zervas, M. Geiselmann, T. Kippenberg. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 6101411.

[45] Y. K. Chembo, N. Yu. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A, 2010, 82: 033801.

[46] T. Hansson, D. Modotto, S. Wabnitz. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt. Commun., 2014, 312: 134-136.

[47] X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, H. X. Tang. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Phys. Rev. Appl., 2018, 10: 014012.

Shuai Wan, Rui Niu, Zheng-Yu Wang, Jin-Lan Peng, Ming Li, Jin Li, Guang-Can Guo, Chang-Ling Zou, Chun-Hua Dong. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators[J]. Photonics Research, 2020, 8(8): 08001342.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!