Photonics Research, 2015, 3 (4): 04000146, Published Online: Jan. 6, 2016  

Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile Download: 790次

Author Affiliations
1 State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University,129 Luoyu Road, Wuhan 430079, China
2 Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China
Copy Citation Text

Wei Gong, Ailin Liang, Ge Han, Xin Ma, Chengzhi Xiang. Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile[J]. Photonics Research, 2015, 3(4): 04000146.

References

[1] FieldC.Van AalstM., Climate Change 2014: Impacts, Adaptation, and Vulnerability (IPCC, 2014).

[2] J. E. Bauer, W. J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, P. A. Regnier. The changing carbon cycle of the coastal ocean. Nature, 2013, 504: 61-70.

[3] I. Y. Fung, S. C. Doney, K. Lindsay, J. John. Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA, 2005, 102: 11201-11206.

[4] D. Bruneau, F. Gibert, P. H. Flamant, J. Pelon. Complementary study of differential absorption lidar optimization in direct and heterodyne detections. Appl. Opt., 2006, 45: 4898-4908.

[5] AllanG. R.RirisH.AbshireJ. B.SunX.WilsonE.BurrisJ. F.KrainakM. A., “Laser sounder for active remote sensing measurements of CO2 concentrations,” in Aerospace Conference (IEEE, 2008), pp. 17.

[6] S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.-J. Roelofs, F.-M. Breon. Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos. Chem. Phys., 2005, 5: 3003-3013.

[7] R. J. Engelen, G. L. Stephens. Information content of infrared satellite sounding measurements with respect to CO2. J. Appl. Meteorol., 2004, 43: 373-378.

[8] S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, M. Nakajima. Performance improvement and analysis of a 1.6 μm continuous-wave modulation laser absorption spectrometer system for CO2 sensing. Appl. Opt., 2011, 50: 1560-1569.

[9] J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. P. Mao, X. L. Sun, W. E. Hasselbrack, S. R. Kawa, S. Biraud. Pulsed airborne lidar measurements of atmospheric CO2 column absorption. Tellus B, 2010, 62: 770-783.

[10] G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B, 2008, 90: 593-608.

[11] S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, C. Weaver. Simulation studies for a space-based CO2 lidar mission. Tellus B, 2010, 62: 759-769.

[12] G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements. Appl. Opt., 2008, 47: 944-956.

[13] F. Gibert, P. H. Flamant, J. Cuesta, D. Bruneau. Vertical 2-μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere. J. Atmos. Ocean. Technol., 2008, 25: 1477-1497.

[14] D. Sakaizawa, S. Kawakami, M. Nakajima, Y. Sawa, H. Matsueda. Ground-based demonstration of a CO2 remote sensor using a 1.57 μm differential laser absorption spectrometer with direct detection. J. Appl. Remote Sens., 2010, 4: 043548.

[15] L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, C. Minopoli, A. Aiuppa. Volcanic CO2 detection with a DFM/OPA-based lidar. Opt. Lett., 2015, 40: 1034-1036.

[16] J. Mao, S. R. Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt., 2004, 43: 914-927.

[17] G. Han, W. Gong, H. Lin, X. Ma, Z. Xiang. Study on influences of atmospheric factors on vertical co2 profile retrieving from ground-based DIAL at 1.6 μm. IEEE Transactions on Geoscience Electronics, 2015, 53: 3221-3234.

[18] E. Dufour, F.-M. Bréon. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis. Appl. Opt., 2003, 42: 3595-3609.

[19] R. T. Menzies, D. M. Tratt. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements. Appl. Opt., 2003, 42: 6569-6577.

[20] D. Lu, W. Pan. Atmospheric profiling synthetic observation system (APSOS). AIP Conf. Proc., 2013, 1531: 244-247.

[21] E. Browell, S. Ismail, W. Grant. Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B, 1998, 67: 399-410.

[22] U. Platt, D. Perner. Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV. J. Geophys. Res., 1980, 85: 7453-7458.

[23] K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y. Tsumura, J. Nakagawa, N. Kawada. Differential absorption lidar at 1.67 μm for remote sensing of methane leakage. Jpn. J. Appl. Phys., 1999, 38: 110.

[24] P. F. Ambrico, A. Amodeo, P. Di Girolamo, N. Spinelli. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region. Appl. Opt., 2000, 39: 6847-6865.

[25] B. Armstrong. Spectrum line profiles: the Voigt unction. J. Quant. Spectrosc. Radiat. Transfer, 1967, 7: 61-88.

[26] E. V. Browell, S. Ismail, B. E. Grossmann. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region. Appl. Opt., 1991, 30: 1517-1524.

[27] A. Predoi-Cross, A. McKellar, D. C. Benner, V. M. Devi, R. Gamache, C. Miller, R. Toth, L. Brown. Temperature dependences for air-broadened Lorentz half-width and pressure shift coefficients in the 30013 ← 00001 and 30012← 00001 bands of CO2 near 1600 nm. Can. J. Phys., 2009, 87: 517-535.

[28] L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. Brown. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 2013, 130: 4-50.

[29] A. Amediek, A. Fix, M. Wirth, G. Ehret. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys. B, 2008, 92: 295-302.

[30] A. J. Krueger, R. A. Minzner. A mid-latitude ozone model for the 1976 US Standard Atmosphere. J. Geophys. Res., 1976, 81: 4477-4481.

[31] K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, M. A. Krainak. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide. Appl. Opt., 2011, 50: 1047-1056.

[32] G. Wertheim, M. Butler, K. West, D. Buchanan. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum., 1974, 45: 1369-1371.

Wei Gong, Ailin Liang, Ge Han, Xin Ma, Chengzhi Xiang. Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile[J]. Photonics Research, 2015, 3(4): 04000146.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!