红外与毫米波学报, 2018, 37 (1): 112, 网络出版: 2018-03-14   

光束发散角对星载激光测高仪森林回波的影响

Impact of beam divergence angle on forest echo from satellite laser altimeter
作者单位
1 武汉大学 电子信息学院,湖北 武汉 430072
2 昆明理工大学 理学院,云南 昆明 650051
引用该论文

王虹, 马跃, 李松, 张智宇, 黄科, 易洪. 光束发散角对星载激光测高仪森林回波的影响[J]. 红外与毫米波学报, 2018, 37(1): 112.

WANG Hong, MA Yue, LI Song, ZHANG Zhi-Yu, HUANG Ke, YI Hong. Impact of beam divergence angle on forest echo from satellite laser altimeter[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 112.

参考文献

[1] Allouis T, Durrieu S, Couteron P. A New Method for Incorporating Hillslope Effects to Improve Canopy-Height Estimates From Large-Footprint LIDAR Waveforms[J]. IEEE Geoscience and Remote Sensing Letters. 2012, 9(4): 730-734.

[2] Lefsky M A, Cohen W B, Harding D J, et al. Lidar Remote Sensing of Above-Ground Biomass in Three Biomes[J]. Global Ecology & Biogeography, 2002, 11(5):393-399.

[3] Xing Y Q, de Gier A, Zhang J J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation & Geoinformation, 2010, 12(5):385-392.

[4] WANG Cheng, XI Xiao-Huan, LUO She-Zhou, et al. Data processing and application of spaceborne LiDAR[M]. Beijing: Science Press(王成, 习晓环, 骆社周, 等. 星载激光雷达数据处理与应用. 北京: 科学出版社), 2015.

[5] Bye I J, North P R J, Los S O, et al. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model[J]. Remote Sensing of Environment, 2017, 188:177-189.

[6] Nie S, Wang C, Zeng H, et al. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 108:183-190.

[7] Nelson R, Margolis H, Montesano P, et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations[J]. Remote Sensing of Environment, 2017, 188:127-140.

[8] Tian J, Wang L, Li X, et al. Differentiating Tree and Shrub LAI in a Mixed Forest With ICESat/ GLAS Spaceborne LiDAR [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing. 2016, 10(1):87-94.

[9] Hilbert C. and Schmullius C., Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape[J]. Remote Sensing, 2012, 4(8): 2210-2235.

[10] Mallet C, Bretar F. Full-waveform Topographic Lidar: State-of-the-art[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64(1):1-16.

[11] WANG Cheng, TANG Fu-Xin, LI Li-Wei, et al. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation[J]. IEEE Geoscience & Remote Sensing Letters. 2013, 10(1):115-119.

[12] LAI Xu-Dong, QIN Nan-Nan, HAN Xiao-Shuang, et al. Iterative decomposition method for small foot-print LiDAR waveform[J]. J. Infrared Millim. Waves(赖旭东, 秦楠楠, 韩晓爽, 等. 一种迭代的小光斑LiDAR波形分解方法. 红外与毫米波学报), 2013, 32(4): 319-324.

[13] Harding D J, Carabajal C C. ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure[J]. Geophysical Research Letters, 2005, 32(21):741-746.

[14] MA Yue, LI Song, ZHANG Wen-Hao, et al. Waveform width of a satellite laser altimeter illuminating on sea surface. Applied Optics, 2017, 56(22), 6130-6137.

[15] MA Yue, WANG Ming-Wei, LI Guo-Yuan, et al. Waveform model of a laser altimeter for an elliptical Gaussian beam. Applied Optics, 2016, 55(8): 3567-3574.

[16] Lefsky M A, Michael A. A Global Forest Canopy Height Map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System[J]. Geophysical Research Letters,2010, 37(15): 78-82.

[17] Chen Q. Retrieving vegetation height of forests and woodlands over mountainous areas in the Pacific Coast region using satellite laser altimetry[J]. Remote Sensing of Environment, 2010, 114(7):1610-1627.

[18] Pang Y, Lefsky M, Sun G, et al. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar[J]. Remote Sensing of Environment, 2011, 115(11):2798-2809.

[19] Huang H, Liu C, Wang X, et al. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2017, 129: 189-199.

[20] Brenner A C, Zwally H J, Bentley C R, et al., Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights[R]. US: GLAS Algorithm Theoretical Basis Document. Version 5.0, 2011.

[21] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60(2):100-112.

[22] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience & Remote Sensing, 1999, 38(4):1989-1996.

[23] Gardner C S. Target signatures for laser altimeters: an analysis[J]. Applied Optics, 1982, 21(3): 448-53.

[24] Gardner C S. Ranging Performance of Satellite Laser Altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):1061-1072.

[25] Blair J B, Hofton M A. Modeling Laser Altimeter Return Waveforms Over Complex Vegetation Using High-Resolution Elevation Data [J]. Geophysical Research Letters,1999, 26(16):2509-2512.

王虹, 马跃, 李松, 张智宇, 黄科, 易洪. 光束发散角对星载激光测高仪森林回波的影响[J]. 红外与毫米波学报, 2018, 37(1): 112. WANG Hong, MA Yue, LI Song, ZHANG Zhi-Yu, HUANG Ke, YI Hong. Impact of beam divergence angle on forest echo from satellite laser altimeter[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 112.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!