Journal of Innovative Optical Health Sciences, 2018, 11 (6): 1830003, Published Online: Dec. 27, 2018  

Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine

Author Affiliations
Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
Copy Citation Text

Taojian Fan, Yansheng Zhou, Meng Qiu, Han Zhang. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1830003.

References

[1] A. R. Akhmerov, C. W. J. Beenakker, “Boundary conditions for Dirac fermions on a terminated honeycomb lattice,” Physics 77, 439–446 (2008). Google Scholar

[2] D. M. Basko, “Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene,” Phys. Rev. B Condens. Matter 79, 205428 (2009).

[3] W. Beugeling, J. C. Everts, C. M. Smith, “Topological phase transitions driven by next-nearest-neighbor hopping in two-dimensional lattices,” Phys. Rev. B 86, 1721–1725 (2012).

[4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008). Crossref, ISI, Google Scholar

[5] A. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, Y. Li, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, “Graphene at the edge: Stability and dynamics,” Science 323, 1705–1708 (2009).

[6] X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, X. Sun, “Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries,” Electrochem. Commun. 13, 822–825 (2011).

[7] B. Shen, J. Chen, X. Yan, Q. Xue, “Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge,” Rsc Adv. 2, 6761–6764 (2012).

[8] H. W. Yoon, Y. H. Cho, H. B. Park, “Graphene-based membranes: Status and prospects,” Philos. Trans. 374, 20150024 (2016).

[9] J. Zhang, Z. Xie, W. Li, S. Dong, M. Qu, “High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes,” Carbon 74, 153–162 (2014).

[10] S. De Jong, A. Haas, J. Qian, G. Blazey, D. Hedin, A. Sanchezhernandez, A. Heinson, J. G. Lima, R. Madaras, A. Duperrin, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).

[11] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett. 11, 5111–5116 (2011). Crossref, ISI, Google Scholar

[12] Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, “Fabrication of flexible MoS2 thin–film transistor arrays for practical gas–sensing applications,” Small 8, 2994–2999 (2012). Crossref, ISI, Google Scholar

[13] D. Jariwala, V. K. Sangwan, D. J. Late, J. E. Johns, V. P. Dravid, T. J. Marks, L. J. Lauhon, M. C. Hersam, “Band-like transport in high mobility unencapsulated single-layer MoS2 transistors,” Appl. Phys. Lett. 102, 699 (2013).

[14] J. Liu, Z. Zeng, X. Cao, G. Lu, L. H. Wang, Q. L. Fan, W. Huang, H. Zhang, “Preparation of MoSa,-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes,” Small 8, 3517–3522 (2012).

[15] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011). Crossref, ISI, Google Scholar

[16] B. Radisavljevic, M. B. Whitwick, A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5, 9934–9938 (2011). Crossref, ISI, Google Scholar

[17] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010). Crossref, ISI, Google Scholar

[18] H. Wang, L. Yu, Y. H. Lee, Y. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, T. Palacios, “Integrated circuits based on bilayer MoS2 transistors,” Nano Lett. 12, 4674 (2012). Crossref, ISI, Google Scholar

[19] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano 6, 74–80 (2012). Crossref, ISI, Google Scholar

[20] C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, “Synthesis and optical properties of large area single crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014). Crossref, ISI, Google Scholar

[21] A. L. Elías, N. Perealópez, A. Castrobeltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, “Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers,” ACS Nano 7, 5235–5242 (2013).

[22] K. M. Mccreary, A. T. Hanbicki, S. Simranjeet, R. K. Kawakami, G. G. Jernigan, I. Masa, N. Amy, T. H. Brintlinger, R. M. Stroud, B. T. Jonker, “The effect of preparation conditions on Raman and photoluminescence of monolayer WS2,” Sci. Rep. 6, 35154 (2016).

[23] M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, R. Kitaura, “Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride,” ACS Nano 8, 8273–8277 (2014).

[24] N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, T. Yu, “Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles,” ACS Nano 7, 10985–10994 (2013). Crossref, ISI, Google Scholar

[25] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano 7, 8963–8971 (2013). Crossref, ISI, Google Scholar

[26] H. Huang, M. Qiu, Q. Li, S. Liu, X. Zhang, Z. Wang, N. Fu, B. Zhao, R. Yang, W. Huang, “Donor–acceptor conjugated polymers based on thieno[3,2-b]indole (TI) and 2,1,3-benzothiadiazole (BT) for high efficiency polymer solar cells,” J. Mater. Chem. C 4, 5448–5460 (2016).

[27] S. Han, D. Wu, S. Li, F. Zhang, X. Feng, “ChemInform abstract: Porous graphene materials for advanced electrochemical energy storage and conversion devices,” Adv. Mater. 26, 849–864 (2014).

[28] Z. Jiang, B. Pei, A. Manthiram, “Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance,” J. Mater. Chem. A 1, 7775–7781 (2013).

[29] M. Qiu, S. Long, B. Li, L. Yan, W. Xie, Y. Niu, X. Wang, Q. Guo, A. Xia, “Toward an understanding of how the optical property of water-soluble cationic polythiophene derivative is altered by the addition of salts: The Hofmeister effect,” J. Phys. Chem. C 117, 21870–21878 (2013).

[30] W. C. Ren, L. B. Gao, L. P. Ma, H. M. Cheng, “Preparation of graphene by chemical vapor deposition,” Carbon 49, 2881 (2011).

[31] D. Zhu, Q. Zhu, C. Gu, D. Ouyang, M. Qiu, X. Bao, R. Yang, “Alkoxyl side chain substituted thieno[3,4-c]pyrrole-4,6-dione to enhance photovoltaic performance with low steric hindrance and high dipole moment,” Macromolecules 49, 5788–5795 (2016).

[32] M. Qiu, D. Zhu, X. Bao, J. Wang, X. Wang, R. Yang, “WO3 with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells,” J. Mater. Chem. A 4, 894–900 (2016).

[33] M. Qiu, D. Zhu, L. Yan, N. Wang, L. Han, X. Bao, Z. Du, Y. Niu, R. Yang, “Strategy to manipulate molecular orientation and charge mobility in D-A type conjugated polymer through rational fluorination for improvements of photovoltaic performances,” J. Phys. Chem. C 120, 22757–22765 (2016).

[34] M. Qiu, R. G. Brandt, Y. Niu, X. Bao, D. Yu, N. Wang, L. Han, L. Yu, S. Xia, R. Yang, “Theoretical study on the rational design of cyano-substituted P3HT materials for OSCs: Substitution effect on the improvement of photovoltaic performance,” J. Phys. Chem. C 119, 8501–8511 (2015).

[35] Y. Zhang, Y. Zheng, K. Rui, H. H. Hng, K. Hippalgaonkar, J. Xu, W. Sun, J. Zhu, Q. Yan, W. Huang, “2D black phosphorus for energy storage and thermoelectric applications,” Small 13, 1700661 (2017).

[36] W. Lei, G. Liu, J. Zhang, M. Liu, “Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization,” Chem. Soc. Rev. 46, 3492 (2017).

[37] M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L.-P. Liu, H. Zhang, J. S. Kim, “Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications,” Chem. Soc. Rev. 47, 5588–5601 (2018).

[38] Y. Lin, Y. Wu, R. Wang, G. Tao, P. F. Luo, X. Lin, G. Huang, J. Li, H. H. Yang, “Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy,” Chem. Commun. 54, 8579–8582 (2018).

[39] T. Guo, Y. Lin, Z. Li, S. Chen, G. Huang, H. Lin, J. Wang, G. Liu, H. H. Yang, “Gadolinium oxysulfide-coated gold nanorods with improved stability and dual-modal magnetic resonance/photoacoustic imaging contrast enhancement for cancer theranostics,” Nanoscale 9, 56–61 (2017).

[40] Z. Chen, X. Liu, Y. Liu, S. Gunsel, J. Luo, “Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants,” Sci. Rep. 5, 12869 (2015).

[41] L. Cizaire, B. Vacher, T. L. Mogne, J. M. Martin, L. Rapoport, A. Margolin, R. Tenne, “Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS 2 nanoparticles,” Surf. Coat. Technol. 160, 282–287 (2002). Crossref, ISI, Google Scholar

[42] J. J. Hu, J. E. Bultman, J. S. Zabinski, “Microstructure and lubrication mechanism of multilayered MoS 2/Sb 2 O 3 thin films,” Tribol. Lett. 21, 169–174 (2006).

[43] B. Huard, N. Stander, J. A. Sulpizio, D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron-hole asymmetry in graphene,” Phys. Rev. B 78, 121402 (2008).

[44] W. J. Liu, H. Y. Yu, J. Wei, M. F. Li, “Impact of process induced defects on the contact characteristics of Ti/graphene devices,” Electrochem. Solid-State Lett. 14, K67 (2011).

[45] K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, “Contact resistivity and current flow path at metal/graphene contact,” Appl. Phys. Lett. 97, 1068 (2010).

[46] T. Xian, W. Liang, J. Zhao, Z. Li, Q. Meng, T. Fan, C. S. Luo, Z. Ye, L. Yu, Z. Guo, “Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability,” Small 13, 1702739 (2017).

[47] Z. Xie, D. Wang, T. Fan, C. Xing, Z. Li, W. Tao, L. Liu, S. Bao, D. Fan, H. Zhang, “Black phosphorus analogue tin sulfide nanosheets: Synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy,” J. Mater. Chem. B 6, 4747–4755 (2018).

[48] C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li, “Ultra-small bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV-Vis photo-detector,” ACS Photon. 5, 621–629 (2017).

[49] Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, “Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2d Mater. 4, 045010 (2017).

[50] Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen, Z. Liang, Y. Song, Y. Zou, H. Zeng, S. Xu, “Ultrafast photonics: Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and alloptical thresholding devices (Advanced Optical Materials 4/2018),” Adv. Opt. Mater. 6, 1870014 (2018).

[51] H. Dong, J. Zhang, H. Ju, H. Lu, S. Wang, S. Jin, K. Hao, H. Du, X. Zhang, “Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction,” Anal. Chem. 84, 4587–4593 (2012).

[52] P. Hu, C. Zhu, L. Jin, S. Dong, “An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification,” Biosens. Bioelectron. 34, 83–87 (2012).

[53] B. Li, X. Li, M. Wang, Z. Yang, H. Yin, S. Ai, “Photoelectrochemical biosensor for highly sensitive detection of microRNA based on duplex-specific nuclease-triggered signal amplification,” J. Solid State Electrochem. 19, 1301–1309 (2015).

[54] Y. Lu, P. Wu, Y. Yin, H. Zhang, C. Cai, “Aptamer-functionalized graphene oxide for highly efficient loading and cancer cell-specific delivery of antitumor drug,” J. Mater. Chem. B 2, 3849–3859 (2014).

[55] Y. Ohno, K. Maehashi, K. Matsumoto, “Label-free biosensors based on aptamer-modified graphene field-effect transistors,” J. Am. Chem. Soc. 132, 18012–18013 (2010).

[56] J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, K. Kalantarzadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14, 857 (2014).

[57] D. Sarkar, W. Liu, X. Xie, A. C. Anselmo, S. Mitragotri, K. Banerjee, “MoS2 field-effect transistor for next-generation label-free biosensors,” ACS Nano 8, 3992 (2014).

[58] P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, “Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells,” J. Mater. Chem. 22, 6402–6412 (2012).

[59] Q. Xi, D. M. Zhou, Y. Y. Kan, J. Ge, Z. K. Wu, R. Q. Yu, J. H. Jiang, “Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification,” Anal. Chem. 86, 1361 (2014).

[60] X. H. Zhao, Q. J. Ma, X. X. Wu, X. Zhu, “Graphene oxide-based biosensor for sensitive fluorescence detection of DNA based on exonuclease III-aided signal amplification,” Anal. Chim. Acta 727, 67–70 (2012).

[61] C. Zhu, Z. Zeng, H. Li, F. Li, C. Fan, H. Zhang, “Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules,” J. Am. Chem. Soc. 135, 5998 (2013). Crossref, ISI, Google Scholar

[62] L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi, T. Liu, C. Wang, X. Wang, G. Liu, H. Xing, “PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy,” Adv. Mater. 26, 1886–1893 (2014).

[63] T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng, C. Wang, X. Song, S. Goel, T. E. Barnhart, W. Cai, “Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy,” ACS Nano 9, 950–960 (2015). Crossref, ISI, Google Scholar

[64] T. Liu, C. Wang, W. Cui, H. Gong, C. Liang, X. Shi, Z. Li, B. Sun, Z. Liu, “Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets,” Nanoscale 6, 11219–11225 (2014).

[65] X. Qian, S. Shen, T. Liu, L. Cheng, Z. Liu, “Two-dimensional TiSa, nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy,” Nanoscale 7, 6380–6387 (2015).

[66] L. V. Wang, S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012). Crossref, ISI, Google Scholar

[67] S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, H. Chen, “A facile one-pot synthesis of a two-dimensional MoS2/Bi2 S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy,” Adv. Mater. 27, 2775–2782 (2015).

[68] Y. Yong, L. Zhou, Z. Gu, L. Yan, G. Tian, X. Zheng, X. Liu, X. Zhang, J. Shi, W. Cong, “WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells,” Nanoscale 6, 10394–10403 (2014).

[69] W. Tao, X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. Guo, “Inside cover: Antimonene quantum dots: Synthesis and application as near infrared photothermal agents for effective cancer therapy (Angew. Chem. Int. Ed. 39/2017),” Angew. Chem. 56, 11896 (2017).

[70] T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun, Z. Liu, “Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer,” Adv. Mater. 26, 3433–3440 (2014).

[71] Y. Ma, H. Wang, Y. Dan, Y. Wei, Y. Cao, P. Yi, H. Zhang, Z. Deng, J. Dai, X. Liu, “Magnetic resonance imaging revealed splenic targeting of canine parvovirus capsid protein VP2,” Sci. Rep. 6, 23392 (2016).

[72] N. Shadjou, M. Hasanzadeh, “Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances,” J. Biomed. Mater. Res. Part A 104, 1250–1275 (2016).

[73] C. Wang, C. Wu, X. Zhou, T. Han, X. Xin, J. Wu, J. Zhang, S. Guo, “Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots,” Sci. Rep. 3, 2852 (2013).

[74] Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, “Ultrathin 2D nonlayered tellurium nanosheets: Facile liquidphase exfoliation, characterization, and photoresponse with high performance and enhanced stability,” Adv. Funct. Mater. 28, 1705833 (2018).

[75] C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, H. Zhang, “Selenium nanosheets: 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics (Advanced Optical Materials 24/2017),” Adv. Opt. Mater. 5, 1700884 (2017).

[76] L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, “Few layer tin sulfide: A promising black phosphorus analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all optical switching and wavelength conversion,” Adv. Opt. Mater. 6, 1700985 (2018).

[77] L. Lu, Z. Liang, L. Wu, Y. X. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, “Few layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2018).

[78] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9, 315 (2010). Crossref, ISI, Google Scholar

[79] C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. Von Klitzing, J. H. Smet, U. Starke, “Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping,” Phys. Rev. B Condens. Matter 81, 136–138 (2010).

[80] X. Deng, Y. Wu, J. Dai, D. Kang, D. Zhang, “Electronic structure tuning and band gap opening of graphene by hole/electron codoping,” Phys. Lett. A 375, 3890–3894 (2011).

[81] P. A. Denis, “Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur,” Chem. Phys. Lett. 492, 251–257 (2010). Crossref, ISI, Google Scholar

[82] X. Fan, Z. Shen, A. Q. Liu, J. L. Kuo, “Band gap opening of graphene by doping small boron nitride domains,” Nanoscale 4, 2157–2165 (2012).

[83] H. Gao, L. Wang, J. Zhao, F. Ding, J. Lu, “Band gap tuning of hydrogenated graphene: H coverage and configuration dependence,” J. Phys. Chem. C 115, 3236–3242 (2011). Crossref, ISI, Google Scholar

[84] C. Lin, Y. Feng, Y. Xiao, M. Dürr, X. Huang, X. Xu, R. Zhao, E. Wang, X. Z. Li, Z. Hu, “Direct observation of ordered configurations of hydrogen adatoms on graphene,” Nano Lett. 15, 903 (2015).

[85] P. Rani, V. K. Jindal, “Designing band gap of graphene by B and N dopant atoms,” RSC Adv. 3, 802–812 (2012).

[86] J. O. Sofo, “Graphane: A two-dimensional hydrocarbon,” Phys. Rev. B 75, 153401 (2007). Crossref, ISI, Google Scholar

[87] J. W. Yang, G. Lee, J. S. Kim, K. S. Kim, “Gap opening of graphene by dual FeCl3-acceptor and K-donor doping,” J. Phys. Chem. Lett. 2, 2577–2581 (2015).

[88] I. Zanella, S. Guerini, S. B. Fagan, J. M. Filho, A. G. S. Filho, “Chemical doping-induced gap opening and spin polarization in graphene,” Phys. Rev. B 77, 033404 (2008).

[89] A. S. George, Z. Mutlu, R. Ionescu, R. J. Wu, J. S. Jeong, H. H. Bay, Y. Chai, K. A. Mkhoyan, M. Ozkan, C. S. Ozkan, “Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers,” Adv. Funct. Mater. 24, 7461–7466 (2015).

[90] K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, “Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates,” Nano Lett. 12, 1538–1544 (2012). Crossref, ISI, Google Scholar

[91] G. Li-Yong, Z. Qingyun, C. Yingchun, S. G. Udo, “Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers,” J. Phys. Chem. Lett. 5, 1445–1449 (2014).

[92] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, T. M. Rice, “Two-dimensional atomic crystals,” Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). Crossref, ISI, Google Scholar

[93] N. Perealópez, Z. Lin, N. R. Pradhan, A. Iniguezrábago, A. L. Elías, A. Mccreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas, “CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage,” 2d Mater. 1, 011004 (2014).

[94] Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, “van der Waals epitaxy of MoSa, layers using graphene as growth templates,” Nano Lett. 12, 2784–2791 (2012).

[95] S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q. H. Wang, M. Bhaskaran, S. Sriram, M. S. Strano, K. Kalantar-Zadeh, “Transition metal oxides — Thermoelectric properties,” Prog. Mater. Sci. 58, 1443–1489 (2013). Crossref, ISI, Google Scholar

[96] M. Ye, D. Winslow, D. Zhang, R. Pandey, Y. K. Yap, “Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films,” Photonics 2, 288–307 (2015).

[97] M. Chen, H. Nam, S. Wi, G. Priessnitz, I. M. Gunawan, X. Liang, “Multibit data storage states formed in plasma-treated MoS2 transistors,” ACS Nano 8, 4023–4032 (2014).

[98] S. Chuang, C. Battaglia, A. Azcatl, S. Mcdonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, “MoS2 P-type transistors and diodes enabled by high workfunction MoOx contacts,” Nano Lett. 14, 1337 (2014).

[99] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science 42, 568–571 (2011).

[100] J. Kang, W. Liu, K. Banerjee, “High-performance MoS2 transistors with low-resistance molybdenum contacts,” Appl. Phys. Lett. 104, 093106-5 (2014).

[101] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat, “From bulk to monolayer MoS2: Evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012). Crossref, ISI, Google Scholar

[102] B. Liu, L. Chen, G. Liu, A. N. Abbas, M. Fathi, C. Zhou, “High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors,” ACS Nano 8, 5304–5314 (2014).

[103] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, “Chloride molecular doping technique on 2D materials: WS2 and MoS2,” Nano Lett. 14, 6275 (2014).

[104] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, “Single layer semiconducting nanosheets: High yield preparation and device fabrication,” Angew. Chem. 50, 11093–11097 (2011).

[105] W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, “Facile fabrication and characterization of two-dimensional bismuth-(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 14, 1702082 (2018). Google Scholar

[106] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, “Broadband nonlinear photonics in few layer MXene Ti3C2Tx (T == F, O, or OH),” Laser Photon. Rev. 12, 1700229 (2017).

[107] D. Ma, Y. Li, J. Yang, H. Mi, S. Luo, L. Deng, C. Yan, P. Zhang, Z. Lin, X. Ren, “Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery,” Nano Energy 43, 317–325 (2017).

[108] H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou, H. Liu, S. Wang, “Recent advances on black phosphorus for energy storage, catalysis, and sensor applications,” Adv. Mater. 30, 1800295 (2018).

[109] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8, 4033–4041 (2014). Crossref, ISI, Google Scholar

[110] A. Manjanath, A. Samanta, T. Pandey, A. K. Singh, “Semiconductor to metal transition in bilayer phosphorene under normal compressive strain,” Nanotechnology 26, 075701 (2015).

[111] X. Peng, Q. Wei, A. Copple, “Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene,” Phys. Rev. B 90, 085402 (2014).

[112] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996). Crossref, ISI, Google Scholar

[113] E. Scalise, M. Houssa, G. Pourtois, V. Afanas’Ev, A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS 2,” Nano Res. 5, 43–48 (2012).

[114] C. D. Zhang, J. C. Lian, W. Yi, Y. H. Jiang, L. W. Liu, H. Hu, W. D. Xiao, S. X. Du, L. L. Sun, H. J. Gao, “Surface structures of black phosphorus investigated with scanning tunneling microscopy,” J. Phys. Chem. C 113, 18823–18826 (2009).

[115] J. R. Choi, K. W. Yong, J. Y. Choi, A. Nilghaz, Y. Lin, J. Xu, X. Lu, “Black phosphorus and its biomedical applications,” Theranostics 8, 1005–1026 (2018).

[116] X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, J. Zhong, “A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors,” J. Mater. Chem. A 5, 6581–6588 (2017).

[117] S. C. Dhanabalan, J. S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, “Emerging trends in phosphorene fabrication towards next generation devices,” Adv. Sci. 4, 1600305 (2017).

[118] J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7, 42357 (2017).

[119] Y. Ge, S. Chen, Y. Xu, Z. He, Z. Liang, Y. Chen, Y. Song, D. Fan, K. Zhang, H. Zhang, “Few-layer selenium-doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications,” J. Mater. Chem. C 5, 6129–6135 (2017).

[120] Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, “Metalion modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).

[121] J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, H. Zhang, “THz photonics in two dimensional materials and metamaterials: Properties, devices and prospects,” J. Mater. Chem. C 6, 1291–1306 (2018).

[122] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 440–449 (2015).

[123] X. H. Wang, J. L. Xu, S. F. Gao, Y. J. Sun, Z. J. Zhu, H. P. Xia, Z. Y. You, H. Zhang, C. Y. Tu, “Frequency stabilization of a dual-frequency Yb3 ++ :GdAl3(BO3)4 laser via nonlinear loss modulation in black phosphorus,” Laser Phys. Lett. 14, 065802 (2017).

[124] Y. Xu, X. F. Jiang, Y. Ge, Z. Guo, Z. Zeng, Q. H. Xu, H. Zhang, X. F. Yu, D. Fan, “Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics,” J. Mater. Chem. C 5, 3007–3013 (2017).

[125] J. W. Jiang, H. S. Park, “Mechanical properties of single-layer black phosphorus,” J. Phys. D Appl. Phys. 47, 385304 (2014).

[126] Y. Poya, K. Bijandra, F. Tara, W. Canhui, A. Mohammad, T. David, I. J. Ernesto, R. F. Klie, S. K. Amin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27, 1887–1892 (2015).

[127] S. Sugai, I. Shirotani, “Raman and infrared reflection spectroscopy in black phosphorus,” Solid State Commun. 53, 753–755 (1985).

[128] X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10, 517–521 (2015).

[129] Q. Wei, X. Peng, “Superior mechanical flexibility of phosphorene and few-layer black phosphorus,” Appl. Phys. Lett. 104, 372–398 (2014).

[130] Z. Yang, J. Hao, S. Yuan, S. Lin, H. M. Yau, J. Dai, S. P. Lau, “Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition,” Adv. Mater. 27, 3748–3754 (2015).

[131] Y. Xu, W. Wang, Y. Ge, H. Guo, X. Zhang, S. Chen, Y. Deng, Z. Lu, H. Zhang, “Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application,” Adv. Funct. Mater. 27, 1702437 (2017).

[132] Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun, Y. Yao, S. Li, Q. Bao, H. Zhang, Y. Zhang, “Field-induced nn -doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility,” Adv. Funct. Mater. 27, 1702211 (2017).

[133] H. Zhang, J. Liu, Z. Chu, Z. Guo, “2 μμ m passively Q-switched laser based on black phosphorus,” Opt. Mater. Expr. 6, 2374 (2016).

[134] M. C. Duch, G. R. S. Budinger, T. L. Yu, S. Soberanes, D. Urich, S. E. Chiarella, L. A. Campochiaro, A. Gonzalez, N. S. Chandel, M. C. Hersam, “Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung,” Nano Lett. 11, 5201 (2011).

[135] J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, “Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation,” Adv. Opt. Mater. 5, 1700026 (2017).

[136] J. Zheng, Z. Yang, S. Chen, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, “Black phosphorus based all-optical-signal-processing: Towards high performances and enhanced stability,” ACS Photon. 4, 1466–1476 (2017).

[137] Y. Zhou, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, “Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices,” Mater. Horizons 4, 997–1019 (2017).

[138] W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng, J. Sheng, Z. Liu, Y. Han, L. Wang, J. Li, L. Deng, Y. N. Liu, S. Guo, “Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer,” Adv. Mater. 29, 1603864 (2017).

[139] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010). Crossref, ISI, Google Scholar

[140] A. Favron, E. Gaufrès, F. Fossard, A. L. Phaneufl’Heureux, N. Y. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14, 826–832 (2015).

[141] G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, J. Hone, “Electron tunneling through atomically flat and ultrathin hexagonal boron nitride,” Appl. Phys. Lett. 99, 666 (2011).

[142] Y. Wang, J. Z. Ou, S. Balendhran, A. F. Chrimes, M. Mortazavi, D. D. Yao, M. R. Field, K. Latham, V. Bansal, J. R. Friend, “Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes,” ACS Nano 7, 10083–10093 (2013). Crossref, ISI, Google Scholar

[143] J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14, 6964–6970 (2014). Crossref, ISI, Google Scholar

[144] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, H. Zhang, “An effective method for the fabrication of few-layer-thick inorganic nanosheets,” Angew. Chem. 124, 9186–9190 (2012).

[145] N. M. Latiff, W. Z. Teo, Z. Sofer, A. C. Fisher, M. Pumera, “The cytotoxicity of layered black phosphorus,” Chemistry 21, 13991–13995 (2015).

[146] Kenry, C. T. Lim, “Biocompatibility and nanotoxicity of layered two-dimensional nanomaterials,” ChemNanoMat 3, 5–16 (2017).

[147] J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, P. K. Chu, “Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy,” Nat. Commun. 7, 12967 (2016).

[148] X. Zhang, Z. Zhang, S. Zhang, D. Li, W. Ma, C. Ma, F. Wu, Q. Zhao, Q. Yan, B. Xing, “Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms,” Small 13, 1701210 (2017).

[149] X. Mu, J. Y. Wang, X. Bai, F. Xu, H. Liu, J. Yang, Y. Jing, L. Liu, X. Xue, H. Dai, Q. Liu, Y. M. Sun, C. Liu, X. D. Zhang, “Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice,” ACS Appl. Mater. Interf. 9, 20399–20409 (2017).

[150] S.-J. Song, Y. Shin, H. Lee, B. Kim, D.-W. Han, D. Lim, “Dose- and time-dependent cytotoxicity of layered black phosphorus in fibroblastic cells,” Nanomaterials 8, 408 (2018).

[151] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 39, 462–493 (2008).

[152] H. Im, H. Shao, I. P. Yong, V. M. Peterson, C. M. Castro, R. Weissleder, H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32, 490–495 (2014).

[153] R. Jha, A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A Pure Appl. Opt. 11, 045502 (2009).

[154] A. Lahav, M. Auslender, I. Abdulhalim, “Sensitivity enhancement of guided-wave surface-plasmon resonance sensors,” Opt. Lett. 33, 2539–2541 (2008).

[155] C. F. Mandenius, R. Wang, A. Aldén, M. G. Bergstrom, S. Thébault, C. Lutsch, S. Ohlson, “Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance,” Anal. Chim. Acta 623, 66–75 (2008).

[156] E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bioanal. Chem. 387, 1449–1458 (2007).

[157] M. Piliarik, L. Párová, J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).

[158] V. Shpacovitch, V. Temchura, M. Matrosovich, J. Hamacher, J. Skolnik, P. Libuschewski, D. Siedhoff, F. Weichert, P. Marwedel, H. Müller, “Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles,” Anal. Biochem. 486, 62–69 (2015).

[159] A. Turner, “Biosensors: Then and now,” Trends Biotechnol. 31, 119–120 (2013).

[160] A. W. Wark, H. J. Lee, R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).

[161] Y. Chen, R. Ren, H. Pu, J, Chang, S. Mao, J. Chen, “Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets,” Biosens. Bioelectron. 89, 505–510 (2017).

[162] C. C. Mayorga-Martinez, N. Mohamad Latiff, A. Y. Eng, Z. Sofer, M. Pumera, “Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation,” Anal. Chem. 88, 10074–10079 (2016).

[163] V. Kumar, J. R. Brent, M. Shorie, H. Kaur, G. Chadha, A. G. Thomas, E. A. Lewis, A. P. Rooney, L. Nguyen, X. L. Zhong, M. G. Burke, S. J. Haigh, A. Walton, P. D. McNaughter, A. A. Tedstone, N. Savjani, C. A. Muryn, P. O’Brien, A. K. Ganguli, D. J. Lewis, P. Sabherwal, “Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker,” ACS Appl. Mater. Interf. 8, 22860–22868 (2016).

[164] W. Gu, Y. Yan, X. Pei, C. Zhang, C. Ding, Y. Xian, “Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity,” Sens. Actuat. B: Chem. 250, 601–607 (2017).

[165] M. Lee, Y. H. Park, E. B. Kang, A. Chae, Y. Choi, S. Jo, Y. J. Kim, S.-J. Park, B. Min, T. K. An, J. Lee, S.-I. In, S. Y. Kim, S. Y. Park, I. In, “Highly efficient visible blue-emitting black phosphorus quantum dot: Mussel-inspired surface functionalization for bioapplications,” ACS Omega 2, 7096–7105 (2017).

[166] Y. T. Yew, Z. Sofer, C. C. Mayorga-Martinez, M. Pumera, “Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection,” Mater. Chem. Front. 1, 1130–1136 (2017).

[167] T. D. Craggs, “Green fluorescent protein: Structure, folding and chromophore maturation,” Chem. Soc. Rev. 38, 2865–2875 (2009).

[168] J. R. Enterina, L. Wu, R. E. Campbell, “Emerging fluorescent protein technologies,” Curr. Opin. Chem. Biol. 27, 10–17 (2015).

[169] Y. Hong, J. W. Lam, B. Z. Tang, “Aggregation-induced emission: Phenomenon, mechanism and applications,” ChemInform 40, 4332–4353 (2009).

[170] J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, “Aggregation-induced emission: Together we shine, united we soar!,” Chem. Rev. 115, 11718–11940 (2015).

[171] J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33, 4851–4860 (2012).

[172] T. Sun, Y. S. Zhang, B. Pang, D. C. Hyun, M. Yang, Y. Xia, “Engineered nanoparticles for drug delivery in cancer therapy,” Angew. Chem. 53, 12320–12364 (2015). Google Scholar

[173] D. Wang, J. Qian, S. He, J. S. Park, K. S. Lee, S. Han, Y. Mu, “Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging,” Biomaterials 32, 5880–5888 (2011).

[174] D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, S. He, “Biocompatible and photostable AIE dots with red emission for in vivo two-photon bioimaging,” Sci. Rep. 4, 4279 (2014).

[175] X. D. Wang, O. S. Wolfbeis, R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42, 7834–7869 (2013).

[176] Y. Zhang, J. Qian, D. Wang, Y. Wang, S. He, “Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy,” Angew. Chem. 125, 1186–1189 (2013).

[177] Z. Zhao, B. He, B. Z. Tang, “Aggregation-induced emission of siloles,” Chem. Sci. 6, 5347–5365 (2015).

[178] P. P. Adiseshaiah, R. M. Crist, S. S. Hook, S. E. McNeil, “Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer,” Nat. Rev. Clin. Oncol. 13, 750–765 (2016).

[179] V. P. Chauhan, R. K. Jain, “Strategies for advancing cancer nanomedicine,” Nat. Mater. 12, 958–962 (2013).

[180] X. B. Cheng, K. Shiro, K. Atsuhiro, H. Keiji, S. Norihiro, “Hyaluronan stimulates pancreatic cancer cell motility,” Oncotarget 7, 4829–4840 (2016). Google Scholar

[181] P. Couvreur, “Nanoparticles in drug delivery: Past, present and future,” Adv. Drug Deliv. Rev. 65, 21–23 (2013).

[182] B. Diop-Frimpong, V. P. Chauhan, S. Krane, Y. Boucher, R. K. Jain, “Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors,” Proc. National Acad. Sci. USA 108, 2909–2914 (2011).

[183] R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, “MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer,” IUBMB Life 67, 42–53 (2015).

[184] R. M. Hoffman, M. Bouvet, “Nanoparticle albumin-bound-paclitaxel: A limited improvement under the current therapeutic paradigm of pancreatic cancer,” Exp. Opin. Pharmacother. 16, 943–947 (2015).

[185] S. Lunardi, R. J. Muschel, T. B. Brunner, “The stromal compartments in pancreatic cancer: Are there any therapeutic targets?,” Cancer Lett. 343, 147–155 (2014).

[186] E. R. Manuel, J. Chen, M. D’Apuzzo, M. G. Lampa, T. I. Kaltcheva, C. B. Thompson, T. Ludwig, V. Chung, D. J. Diamond, “Salmonella-based therapy targeting indoleamine 2,3-dioxygenase coupled with enzymatic depletion of tumor hyaluronan induces complete regression of aggressive pancreatic tumors,” Cancer Immunol. Res. 3, 1096 (2015).

[187] C. J. Whatcott, H. Hanl, D. D. V. Hoff, “Orchestrating the tumor microenvironment to improve survival for patients with pancreatic cancer normalization, not destruction,” Cancer J. 21, 299–306 (2015).

[188] G. Yin, J. Haendeler, C. Yan, B. C. Berk, “GIT1 functions as a scaffold for MEK1-extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor,” Mol. Cell. Biol. 24, 875–885 (2004).

[189] J. Shao, C. Ruan, H. Xie, Z. Li, H. Wang, P. K. Chu, X.-F. Yu, “Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer,” Adv. Sci. 5, 1700848 (2018).

[190] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, “Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy,” Proc. Natl Acad. Sci. USA 115, 501–506 (2018).

[191] C. Sun, L. Wen, J. Zeng, Y. Wang, Q. Sun, L. Deng, C. Zhao, Z. Li, “One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer,” Biomaterials 91, 81–89 (2016).

[192] Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, X. F. Yu, “TiL4 -coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer,” Small 13, 1602896 (2017).

[193] G. Yang, Z. Liu, Y. Li, Y. Hou, X. Fei, C. Su, S. Wang, Z. Zhuang, Z. Guo, “Facile synthesis of black phosphorus-Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis,” Biomater. Sci. 5, 2048–2055 (2017).

[194] G. Huang, X. Zhu, H. Li, L. Wang, X. Chi, J. Chen, X. Wang, Z. Chen, J. Gao, “Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy,” Nanoscale 7, 2667–2675 (2015).

[195] M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M. P. Melancon, M. Tian, D. Liang, C. Li, “A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy,” J. Am. Chem. Soc. 132, 15351–15358 (2010).

[196] H. Abrahamse, M. R. Hamblin, “New photosensitizers for photodynamic therapy,” Biochem. J. 473, 347 (2016). Crossref, ISI, Google Scholar

[197] B. N. And, M. A. Elsayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).

[198] A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3, 307 (2009). Crossref, ISI, Google Scholar

[199] F. Bryden, A. Maruani, J. Rodrigues, M. Cheng, H. Savoie, A. Beeby, V. Chudasama, R. W. Boyle, “Assembly of high-potency photosensitizer-antibody conjugates through application of dendron multiplier technology,” Bioconj. Chem. 29, 176 (2018).

[200] S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, V. P. Dravid, “Chemically exfoliated MoS2 as near-infrared photothermal agents,” Angew. Chem. 125, 4254–4258 (2013).

[201] T. A. Debele, S. L. Mekuria, H. C. Tsai, “A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer,” Int. J. Biol. Macromol. 98, 125 (2017).

[202] P. Drake, H. J. Cho, P. S. Shih, C. H. Kao, K. F. Lee, C. H. Kuo, X. Z. Lin, Y. J. Lin, “Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia,” J. Mater. Chem. 17, 4914–4918 (2007).

[203] N. R. Gemmell, A. Mccarthy, M. M. Kim, I. Veilleux, T. C. Zhu, G. S. Buller, B. C. Wilson, R. H. Hadfield, “A compact fiber-optic probe-based singlet oxygen luminescence detection system,” J. Biophoton. 10, 320 (2017).

[204] X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6, 28–32 (2011).

[205] D. Jaque, L. M. Martínez, B. R. Del, P. Harogonzalez, A. Benayas, J. L. Plaza, E. R. Martín, J. S. García, “Nanoparticles for photothermal therapies,” Nanoscale 6, 9494–9530 (2014).

[206] H. Koo, H. Lee, S. Lee, K. H. Min, M. S. Kim, D. S. Lee, Y. Choi, I. C. Kwon, K. Kim, S. Y. Jeong, “ In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles,” Chem. Commun. 46, 5668–5670 (2010).

[207] F. G. Le, V. Sol, C. Ouk, P. Arnoux, C. Frochot, T. S. Ouk, “Enhanced photobactericidal and targeting properties of a cationic porphyrin following attachment of B. Polymyxin,” Bioconj. Chem. 28, 2493–2506 (2018). Google Scholar

[208] D. Li, L. Li, P. Li, Y. Li, X. Chen, “Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress,” Oncotargets Therapy 8, 703–711 (2015).

[209] J. Li, F. Jiang, B. Yang, X. R. Song, Y. Liu, H. H. Yang, D. R. Cao, W. R. Shi, G. N. Chen, “Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy,” Sci. Rep. 3, 1998 (2013).

[210] Z. Liu, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. 121, 7804–7808 (2010).

[211] K. K. Lo, C. K. Chung, N. Zhu, “Synthesis, photophysical and electrochemical properties, and biological labeling studies of cyclometalated iridium-(III) bis(pyridylbenzaldehyde) complexes: Novel luminescent cross-linkers for biomolecules,” Chemistry 9, 475–483 (2010).

[212] A. Nakagawa, Y. Hisamatsu, S. Moromizato, M. Kohno, S. Aoki, “Synthesis and photochemical properties of pH responsive tris-cyclometalated iridium(III) complexes that contain a pyridine ring on the 2-phenylpyridine ligand,” Inorg. Chem. 53, 409–422 (2014).

[213] C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, K. Donaldson, “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nat. Nanotechnol. 3, 423–428 (2008).

[214] N. K. Prasad, K. Rathinasamy, D. Panda, D. Bahadur, “Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γγ -MnxFe2–xO3 synthesized by a single step process,” J. Mater. Chem. 17, 5042–5051 (2007).

[215] G. Rahmathulla, P. F. Recinos, K. Kamian, A. M. Mohammadi, M. S. Ahluwalia, G. H. Barnett, “MRI-guided laser interstitial thermal therapy in neuro-oncology: A review of its current clinical applications,” Oncology 87, 67–82 (2014).

[216] V. Rapozzi, D. Ragno, A. Guerrini, C. Ferroni, P. E. Della, D. Cesselli, G. Castoria, D. M. Di, E. Saracino, V. Benfenati, “Androgen receptor targeted conjugate for bimodal photodynamic therapy of prostate cancer in vitro,” Bioconj. Chem. 26, 1662 (2015).

[217] K. Yang, L. Feng, X. Shi, Z. Liu, “Nano-graphene in biomedicine: Theranostic applications,” Chem. Soc. Rev. 42, 530–547 (2012).

[218] Z. Yu, Q. Sun, W. Pan, N. Li, B. Tang, “A near-infrared triggered nanophotosensitizer inducing Domino effect on mitochondrial reactive oxygen species burst for cancer therapy,” ACS Nano 9, 11064–11074 (2015).

[219] A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu, Y. Hu, “Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies,” J. Pharmaceut. Sci. 102, 6–28 (2012).

[220] Z. Hu, Y. Sim, O. L. Kon, W. H. Ng, A. J. Ribeiro, M. J. Ramos, P. A. Fernandes, R. Ganguly, B. Xing, F. García, E. K. Yeow, “Unique triphenylphosphonium derivatives for enhanced mitochondrial uptake and photodynamic therapy,” Bioconj. Chem. 28, 590 (2017). Crossref, ISI, Google Scholar

[221] P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, Y. Li, “Recent progress in light-triggered nanotheranostics for cancer treatment,” Theranostics 6, 948–968 (2016).

[222] H. Zhao, D. Xing, Q. Chen, “New insights of mitochondria reactive oxygen species generation and cell apoptosis induced by low dose photodynamic therapy,” Eur. J. Cancer 47, 2750–2761 (2011).

[223] Z. Sun, H. Xie, S. Tang, X. F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang, P. K. Chu, “Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents,” Angewandte Chemie 54, 11526–11530 (2015).

[224] H. Fu, Z. Li, H. Xie, Z. Sun, B. Wang, H. Huang, G. Han, H. Wang, P. K. Chu, X.-F. Yu, “Different-sized black phosphorus nanosheets with good cytocompatibility and high photothermal performance,” RSC Adv. 7, 14618–14624 (2017).

[225] C. Xing, S. Chen, M. Qiu, X. Liang, Q. Liu, Q. Zou, Z. Li, Z. Xie, D. Wang, B. Dong, L. Liu, D. Fan, H. Zhang, “Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy,” Adv. Healthcare Mater. 7, 1701510 (2018).

[226] C. Xing, G. Jing, X. Liang, M. Qiu, Z. Li, R. Cao, X. Li, D. Fan, H. Zhang, “Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air,” Nanoscale 9, 8096–8101 (2017).

[227] Y. Zhao, L. Tong, Z. Li, N. Yang, H. Fu, L. Wu, H. Cui, W. Zhou, J. Wang, H. Wang, P. K. Chu, X.-F. Yu, “Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy,” Chem. Mater. 29, 7131–7139 (2017).

[228] B. Yang, J. Yin, Y. Chen, S. Pan, H. Yao, Y. Gao, J. Shi, “2D-black-phosphorus-reinforced 3D-printed scaffolds: A stepwise countermeasure for osteosarcoma,” Adv. Mater. 30, 1705611 (2018).

[229] W. Chen, J. Ouyang, X. Yi, Y. Xu, C. Niu, W. Zhang, L. Wang, J. Sheng, L. Deng, Y. N. Liu, S. Guo, “Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy,” Adv. Mater. 30, 1703458 (2018).

[230] H. Wang, X. Yang, W. Shao, S. Chen, J. Xie, X. Zhang, J. Wang, Y. Xie, “Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation,” J. Am. Chem. Soc. 137, 11376–11382 (2015).

[231] T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J. Z. Liu, X. Wu, H. H. Yang, “Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy,” Small 14, 1702815 (2018).

[232] L. Chen, C. Zhang, L. Li, H. Wu, X. Wang, S. Yan, Y. Shi, M. Xiao, “Ultrafast carrier dynamics and efficient triplet generation in black phosphorus quantum dots,” J. Phys. Chem. C 121, 12972–12978 (2017).

[233] L. Tan, J. Li, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, Y. Zheng, X. Wang, S. Wu, “In situ disinfection through photoinspired radical oxygen species storage and thermal-triggered release from black phosphorous with strengthened chemical stability,” Small 14, 1703197 (2018).

[234] X. Tang, Y. Liang, Y. Zhu, C. Xie, A. Yao, L. Chen, Q. Jiang, T. Liu, X. Wang, Y. Qian, “Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure Candidal meningitis and reduce drug toxicity,” Int. J. Nanomed. 10, 6227–6241 (2015).

[235] S. Tortorella, T. C. Karagiannis, “Transferrin receptor-mediated endocytosis: A useful target for cancer therapy,” J. Membr. Biol. 247, 291–307 (2014).

[236] S. Gao, J. Li, C. Jiang, B. Hong, B. Hao, “Plasmid pORF-hTRAIL targeting to glioma using transferrin-modified polyamidoamine dendrimer,” Drug Des. Develop. Therapy 10, 1–11 (2016).

[237] J. A. Loureiro, B. Gomes, M. A. Coelho, C. P. M. Do, S. Rocha, “Targeting nanoparticles across the blood–brain barrier with monoclonal antibodies,” Nanomedicine 9, 709–722 (2014).

[238] M. Porru, S. Zappavigna, G. Salzano, A. Luce, A. Stoppacciaro, M. L. Balestrieri, S. Artuso, S. Lusa, G. D. Rosa, C. Leonetti, “Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid,” Oncotarget 5, 10446–10459 (2014).

[239] T. R. Daniels, T. Delgado, G. Helguera, M. L. Penichet, “The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells,” Clin. Immunol. 121, 159–176 (2006).

[240] W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, L. Mei, “Black phosphorus nanosheets as a robust delivery platform for cancer theranostics,” Adv. Mater. 29, 1603276 (2017).

[241] S. Wang, J. Weng, X. Fu, J. Lin, W. Fan, N. Lu, J. Qu, S. Chen, T. Wang, P. Huang, “Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy,” Nanotheranostics 1, 208–216 (2017).

[242] F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang, M. Xie, D. Yang, M. Qiu, H. Zhang, Z.-G. Li, “Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells,” J. Mater. Chem. B 5, 5433–5440 (2017).

Taojian Fan, Yansheng Zhou, Meng Qiu, Han Zhang. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1830003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!