激光与光电子学进展, 2017, 54 (11): 111601, 网络出版: 2017-11-17  

孔隙率对编织碳纤维增强聚合物热扩散系数的影响

Effect of Porosity on Thermal Diffusivity of Woven Carbon Fiber Reinforced Polymers
作者单位
1 上海理工大学机械工程学院, 上海 200093
2 多伦多大学扩散波先进技术中心, 多伦多 M5S 3G8, 加拿大
引用该论文

吴恩启, 李美华, 高倩, Mandelis Andreas. 孔隙率对编织碳纤维增强聚合物热扩散系数的影响[J]. 激光与光电子学进展, 2017, 54(11): 111601.

Wu Enqi, Li Meihua, Gao Qian, Mandelis Andreas. Effect of Porosity on Thermal Diffusivity of Woven Carbon Fiber Reinforced Polymers[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111601.

参考文献

[1] 李进卫. 碳纤维增强复合材料性能特点及其应用领域[J]. 化学工业, 2015, 33(8): 13-18.

    Li Jinwei. The discussion of the carbon fiber reinforced composite material performance characteristics and application fields[J]. Chemical Industry, 2015, 33(8): 13-18.

[2] 谷卓伟, Perton Mathieu, Kruger Silvio E, 等. 利用激光冲击波检测碳纤维材料中的粘接质量[J]. 中国激光, 2011, 38(3): 0308002.

    Gu Zhuowei, Perton Mathieu, Kruger Silvio E, et al. Bonding quality detection of composite structure by laser shock wave[J]. Chinese J Lasers, 2011,38(3):0308002.

[3] 谭向虎, 单际国, 唐磊, 等. 面向碳纤维增强树脂基复合材料/钢异质结构连接的汽车钢板高速激光毛化工艺研究[J]. 中国激光, 2015, 42(3): 0303002.

    Tan Xianghu, Shan Jiguo, Tang Lei, et al. Study on laser surfi-sculpt of GMW2 autobody sheet steel for carbon fiber reinforced polymer/steel dissimilar joint[J]. Chinese J Lasers, 2015, 42(3): 0303002.

[4] 周雅斌, 曾捷, 张倩昀, 等. 基于光纤传感水热平衡法测量碳纤维圆筒结构的热扩散系数[J]. 中国激光, 2013, 40(11): 1108001.

    Zhou Yabin, Zeng Jie, Zhang Qianyun, et al. Measurement of the thermal diffusivity of carbon composite by water-heat balance method[J]. Chinese J Lasers, 2013, 40(11): 1108001.

[5] Wróbel G, Pawlak S, Muzia G. Thermal diffusivity measurements of selected fiber reinforced polymer composites using heat pulse method[J]. Archives of Materials Science and Engineering, 2011, 48(1): 25-32.

[6] Wróbel G, Rdzawski Z, Muzia G, et al. Determination of thermal diffusivity of carbon/epoxy composites with different fiber content using transient thermography[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2009, 37(2): 518-525.

[7] Wróbel G, Rdzawski Z, Muzia G, et al. Quantitative analysis of the fibre content distribution in CFRP composites using thermal non-destructive testing[J]. Archives of Materials Science and Engineering, 2010, 41(1): 28-36.

[8] Wróbel G, Pawlak S, Muzia G. Thermal diffusivity measurements of selected fiber reinforced polymer composites using heat pulse method[J]. Archives of Materials Science and Engineering, 2011, 48(1): 25-32.

[9] Kuribara M, Nagano H. Anisotropic thermal diffusivity measurements in high-thermal-conductive carbon-fiber-reinforced plastic composites[J]. Journal of Electronics Cooling and Thermal Control, 2015, 5(1): 15-25.

[10] Ramosa M E, Bonelli P R, Cukierman A L, et al. Influence of thermal treatment conditions on porosity development and mechanical properties of activated carbon cloths from a novel nanofibre-made fabric[J]. Materials Chemistry and Physics, 2009, 116(2/3): 310-314.

[11] 刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5): 116-138.

    Liu Ling, Lu Mingkun, Zhang Boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon epoxy composites[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 116-138.

[12] Fuente R, Mendioroz A, Apianiz E, et al. Simultaneous measurement of thermal diffusivity and optical absorption coefficient of solids using PTR and PPE: a comparison[J]. International Journal of Thermophysics, 2012, 33(10/11): 1876-1886.

[13] Fuente R, Apianiz E, Mendioroz, et al. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. I. Homogeneous solids[J]. Journal of Applied Physics, 2011, 110(3): 033515.

[14] Mayr G, Plank B, Sekelja J, et al. Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers[J]. NDT & E International, 2011, 44(7): 537-543.

[15] 吴恩启, 石玉芳, 李美华, 等. 编织碳纤维复合材料平面内热传导规律研究[J]. 中国激光, 2016, 43(7): 0703004.

    Wu Enqi, Shi Yufang, Li Meihua, et al. Research on in-plane thermal conduction of woven carbon fiber reinforced polymers[J]. Chinese J Lasers, 2016, 43(7): 0703004.

[16] 吴恩启, 徐紫红, 郭新欣, 等. 孔隙率对碳纤维增强复合材料光热辐射信号的影响[J]. 中国激光, 2015, 42(7): 0706006.

    Wu Enqi, Xu Zihong, Guo Xinxin, et al. Influence of porosity on thermal properties of carbon fiber reinforced polymers[J]. Chinese J Lasers, 2015, 42(7): 0706006.

[17] Stratoudaki T, Edwards C, Dixon S, et al. Optical absorption of epoxy resin and its role in the laser ultrasonic generation mechanism in composite materials[C]. AIP Conference Proceedings, 2003, 657(1): 965-972.

[18] Salazar A. On thermal diffusivity[J]. European Journal of Physics, 2003, 24(4): 351-358.

吴恩启, 李美华, 高倩, . 孔隙率对编织碳纤维增强聚合物热扩散系数的影响[J]. 激光与光电子学进展, 2017, 54(11): 111601. Wu Enqi, Li Meihua, Gao Qian, Mandelis Andreas. Effect of Porosity on Thermal Diffusivity of Woven Carbon Fiber Reinforced Polymers[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111601.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!