中国激光, 2019, 46 (9): 0902004, 网络出版: 2019-09-10   

深冷激光喷丸强化对2024-T351铝合金微观组织的影响 下载: 942次

Effect of Cryogenic Laser Peening on Microstructure of 2024-T351 Aluminum Alloy
作者单位
江苏大学机械工程学院, 江苏 镇江 212013
引用该论文

田绪亮, 周建忠, 李京, 孟宪凯, 孙昀杰, 黄宇, 黄舒. 深冷激光喷丸强化对2024-T351铝合金微观组织的影响[J]. 中国激光, 2019, 46(9): 0902004.

Tian Xuliang, Zhou Jianzhong, Li Jing, Meng Xiankai, Sun Yunjie, Huang Yu, Huang Shu. Effect of Cryogenic Laser Peening on Microstructure of 2024-T351 Aluminum Alloy[J]. Chinese Journal of Lasers, 2019, 46(9): 0902004.

参考文献

[1] Sheng J, Huang S, Zhou J Z, et al. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy[J]. Optics & Laser Technology, 2016, 77: 169-176.

[2] Li G R, Cheng J F, Wang H M, et al. The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites[J]. Journal of Alloys and Compounds, 2017, 695: 1930-1945.

[3] Wang H D, Yuan X J, Wu K L, et al. Effect of high energy shot-peening on the microstructure and mechanical properties of Al5052/Ti6Al4V lap joints[J]. Journal of Materials Processing Technology, 2018, 255: 76-85.

[4] Zhang S, Yang B, Xu J, et al. Effects of deformation parameters on microstructure and mechanical properties of magnesium alloy AZ31B[J]. Rare Metals, 2006, 25(6): 105-110.

[5] Nikitin I, Scholtes B, Maier H J, et al. High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304[J]. Scripta Materialia, 2004, 50(10): 1345-1350.

[6] Pant B K. Pavan A H V, Prakash R V, et al. Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V[J]. International Journal of Fatigue, 2016, 93: 38-50.

[7] Muñoz-Cubillos J, Coronado J J, Rodríguez S A. Deep rolling effect on fatigue behavior of austenitic stainless steels[J]. International Journal of Fatigue, 2017, 95: 120-131.

[8] 孙昀杰, 周建忠, 黄舒, 等. 激光喷丸医用Ti6Al4V合金的耐生物腐蚀性能研究[J]. 中国激光, 2017, 44(7): 0702003.

    Sun Y J, Zhou J Z, Huang S, et al. Research on biological corrosion resistance of medical Ti6Al4V alloy subjected to laser peening[J]. Chinese Journal of Lasers, 2017, 44(7): 0702003.

[9] Luong H, Hill M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering: A, 2010, 527(3): 699-707.

[10] Lei S T, Yang G, Wang X Y, et al. High energy femtosecond laser peening of 2024 aluminum alloy[J]. Procedia CIRP, 2018, 74: 357-361.

[11] Zhao J Y, Dong Y L, Ye C. Laser shock peening induced residual stresses and the effect on crack propagation behavior[J]. International Journal of Fatigue, 2017, 100: 407-417.

[12] Meng X K, Zhou J Z, Huang S, et al. Residual stress relaxation and fatigue properties of TC4 titanium alloy induced by warm laser peening under high-cycle fatigue[J]. Rare Metal Materials & Engineering, 2015, 44(5): 1185-1190.

[13] Lee W S, Lin C R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures[J]. Cryogenics, 2016, 79: 26-34.

[14] Shahsavari A, Karimzadeh F, Rezaeian A, et al. Significant increase in tensile strength and hardness in 2024 aluminum alloy by cryogenic rolling[J]. Procedia Materials Science, 2015, 11: 84-88.

[15] Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel[J]. Journal of Materials Processing Technology, 2007, 186(1/2/3): 298-303.

[16] Li J, Zhou J Z, Xu S Q, et al. Effects of cryogenic treatment on mechanical properties and micro-structures of IN718 super-alloy[J]. Materials Science and Engineering: A, 2017, 707: 612-619.

[17] Zhou J Z, Xu S Q, Huang S, et al. Tensile properties and microstructures of a 2024-T351 aluminum alloy subjected to cryogenic treatment[J]. Metals, 2016, 6(11): 279.

[18] 孙云辉, 周建忠, 盛杰, 等. 深冷激光喷丸强化2024-T351铝合金拉伸性能及断口分析[J]. 中国激光, 2017, 44(8): 0802003.

    Sun Y H, Zhou J Z, Sheng J, et al. Tensile property and fracture analysis of 2024-T351 aluminum alloys by cryogenic laser peening[J]. Chinese Journal of Lasers, 2017, 44(8): 0802003.

[19] XieD, Wu SJ, GuanJ, et al.Effect of cryogenic treatment on the fatigue crack propagation behavior of 7075 aluminum alloy[C]∥2015 International Conference on Materials Engineering and Information Technology Applications, August 30-31, 2015, Guilin, China.Paris: Atlantis Press, 2015: 452- 458.

[20] Wei L J, Wang D W, Li H S, et al. Effects of cryogenic treatment on the microstructure and residual stress of 7075 aluminum alloy[J]. Metals, 2018, 8(4): 273.

[21] Konkova T, Mironov S, Korznikov A, et al. Microstructural response of pure copper to cryogenic rolling[J]. Acta Materialia, 2010, 58(16): 5262-5273.

[22] Ren S, Zhang Y F, Xue F, et al. Enhanced surface mechanical properties of Cr12MoV using ultrasonic surface rolling process and deep cryogenic treatment[J]. Solid State Phenomena, 2018, 279: 143-147.

[23] Ye C, Suslov S, Lin D, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1369-1389.

[24] Ye C, Suslov S, Lin D, et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110(8): 083504.

[25] 杨祥伟, 周建忠, 盛杰, 等. TC6钛合金激光喷丸组织演变与表面强化机理[J]. 光学学报, 2017, 37(9): 0914001.

    Yang X W, Zhou J Z, Sheng J, et al. Microstructure evolution and surface strengthening mechanism of TC6 titanium alloy by laser peening[J]. Acta Optica Sinica, 2017, 37(9): 0914001.

[26] Li J, Zhou J Z, Feng A X, et al. Analysis of microstructure and tensile properties produced by cryogenic laser peening on 2024-T351 aluminum alloy[J]. Vacuum, 2018, 158: 141-145.

[27] Li G R, Wang H M, Cai Y, et al. Microstructure and mechanical properties of AZ91 magnesium alloy subject to deep cryogenic treatments[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(9): 896-901.

[28] Feng Z Q, Yang Y Q, Huang B, et al. Precipitation process along dislocations in Al-Cu-Mg alloy during artificial aging[J]. Materials Science and Engineering: A, 2010, 528(2): 706-714.

[29] Ratchev P. Verlinden B, de Smet P, et al. Precipitation hardening of an Al-4.2wt% Mg-0.6wt% Cu alloy[J]. Acta Materialia, 1998, 46(10): 3523-3533.

[30] Zerilli F J. Dislocation mechanics-based constitutive equations[J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2547-2555.

田绪亮, 周建忠, 李京, 孟宪凯, 孙昀杰, 黄宇, 黄舒. 深冷激光喷丸强化对2024-T351铝合金微观组织的影响[J]. 中国激光, 2019, 46(9): 0902004. Tian Xuliang, Zhou Jianzhong, Li Jing, Meng Xiankai, Sun Yunjie, Huang Yu, Huang Shu. Effect of Cryogenic Laser Peening on Microstructure of 2024-T351 Aluminum Alloy[J]. Chinese Journal of Lasers, 2019, 46(9): 0902004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!