中国激光, 2019, 46 (1): 0101003, 网络出版: 2019-01-27   

基于保偏掺铥光纤饱和吸收体的2 μm波段超窄线宽光纤激光器 下载: 1170次

Ultra-Narrow-Linewidth Fiber Laser in 2 μm Band Using Saturable Absorber Based on PM-TDF
作者单位
1 北京交通大学全光网络与现代通信网教育部重点实验室, 北京交通大学光波技术研究所, 北京 100044
2 光信息技术创新中心, 河北省光电信息材料重点实验室, 河北大学物理科学与技术学院, 河北 保定 071002
3 曲阜师范大学物理工程学院, 山东 曲阜 273165
引用该论文

白燕, 延凤平, 冯亭, 韩文国, 张鲁娜, 程丹, 白卓娅, 温晓东. 基于保偏掺铥光纤饱和吸收体的2 μm波段超窄线宽光纤激光器[J]. 中国激光, 2019, 46(1): 0101003.

Bai Yan, Yan Fengping, Feng Ting, Han Wenguo, Zhang Luna, Cheng Dan, Bai Zhuoya, Wen Xiaodong. Ultra-Narrow-Linewidth Fiber Laser in 2 μm Band Using Saturable Absorber Based on PM-TDF[J]. Chinese Journal of Lasers, 2019, 46(1): 0101003.

参考文献

[1] Eimpunth S, Fabi S G, et al. . Treatment of melasma with the 1927-nm fractional thulium fiber laser: a retrospective analysis of 20 cases with long-term follow-up[J]. Lasers in Surgery and Medicine, 2013, 45(2): 95-101.

[2] Voo N Y, Sahu J K, Ibsen M. 345-mW 1836-nm single-frequency DFB fiber laser MOPA[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2550-2552.

[3] de Young R J, Barnes N P. Profiling atmospheric water vapor using a fiber laser lidar system[J]. Applied Optics, 2010, 49(4): 562-567.

[4] Li J F, Sun Z Y, Luo H Y, et al. Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm[J]. Optics Express, 2014, 22(5): 5387-5399.

[5] Ma W Z, Wang T S, Su Y W, et al. Wavelength-spacing switchable dual-wavelength single longitudinal mode thulium-doped fiber laser at 1.9 μm[J]. IEEE Photonics Journal, 2016, 8(6): 1-8.

[6] He X, Xu S H, Li C, et al. 195 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm 3+-doped germanate glass fiber [J]. Optics Express, 2013, 21(18): 20800-20805.

[7] Hanna D C, Jauncey I M, Percival R M, et al. Continuous-wave oscillation of a monomode thulium-doped fibre laser[J]. Electronics Letters, 1988, 24(19): 1222-1223.

[8] Frith G, Lancaster D G, Jackson S D. 85 W Tm 3+-doped silica fibre laser [J]. Electronics Letters, 2005, 41(12): 687-688.

[9] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92.

[10] Kneis C, Donelan B, Berrou A. et al. Actively mode-locked Tm 3+-doped silica fiber laser with wavelength-tunable, high average output power [J]. Optics Letters, 2015, 40(7): 1464-1467.

[11] Tang Y L, Huang C Y, Wang S L, et al. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Optics Express, 2012, 20(16): 17539-17544.

[12] 刘茵紫, 邢颍滨, 徐中巍, 等. 高功率掺铥石英光纤激光器研究进展[J]. 激光与光电子学进展, 2018, 55(5): 050004.

    Liu Y Z, Xing Y B, Xu Z W, et al. Research progress in high power Tm 3+-doped silica fiber laser [J]. Laser & Optoelectronics Progress, 2018, 55(5): 050004.

[13] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505.

[14] Geng J H, Wu J F, Jiang S B, et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm[J]. Optics Letters, 2007, 32(4): 355-357.

[15] Zhang Z, Boyland A J, Sahu J K. et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm[J]. IEEE Photonics Technology Letters, 2011, 23(7): 417-419.

[16] Fu S J, Shi W, Lin J C, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber[J]. Optics Letters, 2015, 40(22): 5283-5286.

[17] Shi W, Petersen E B, Nguyen D T. et al. 220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers[J]. Optics Letters, 2011, 36(18): 3575-3577.

[18] Fang Q, Shi W, Tian X P. et al. 978 nm single frequency actively-switched all fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(9): 874-876.

[19] Geng J, Wang Q, Jiang Z. et al. Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm[J]. Optics Letters, 2011, 36(12): 2293-2295.

[20] . et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249-1254.

    Xu S H, Xu S H, Yang Z M, Yang Z M, Liu T, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 15 μm[J]. Optics Express, 2010, 18(2): 1249-1254.

[21] 焦孟珺, 王欣, 胡丽丽. Tm2O3掺杂浓度对锗酸盐玻璃热稳定性及光谱性质的影响[J]. 中国激光, 2018, 45(6): 0603001.

    Jiao M J, Wang X, Hu L L. Influences of Tm2O3 doping concentration on thermal stability and spectroscopic properties of germanate glass[J]. Chinese Journal of Lasers, 2018, 45(6): 0603001.

[22] Cheng X P, Shum P, Tse C H, et al. Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-PÉrot etalon[J]. IEEE Photonics Technology Letters, 2008, 20(12): 976-978.

[23] Sun T G, Guo Y B, Wang T S, et al. Widely tunable wavelength spacing dual-wavelength single longitudinal mode erbium doped fiber laser[J]. Optical Fiber Technology, 2014, 20(3): 235-238.

[24] Yeh C H, Chow C W, Chen K H. et al. Employing dual-saturable-absorber-based filter for stable and tunable erbium-doped fiber ring laser in single-frequency[J]. Laser Physics, 2011, 21(5): 924-927.

[25] Xu P, Hu Z L, Ma M X, et al. Mapping the optical frequency stability of the single-longitudinal-mode erbium-doped fiber ring lasers with saturable absorber[J]. Optics & Laser Technology, 2013, 49: 337-342.

[26] Feng S C, Lu S H, Peng W J, et al. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber[J]. Optics & Laser Technology, 2013, 47: 102-106.

[27] 白燕, 延凤平, 孙景辉, 等. 基于F-P滤波器和饱和吸收体的单纵模掺铥激光器[J]. 科技导报, 2016, 34(16): 104-107.

    Bai Y, Yan F P, Sun J H, et al. Single-longitudinal-mode thulium-doped fiber laser using Fabry-Perot filter and saturable absorber[J]. Science & Technology Review, 2016, 34(16): 104-107.

[28] Okamura H, Iwatsuki K. A finesse-enhanced Er-doped-fiber ring resonator[J]. Journal of Lightwave Technology, 1991, 9(11): 1554-1560.

[29] Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

[30] 关柏鸥, 余有龙, 葛春风, 等. 光纤光栅法布里-珀罗腔透射特性的理论研究[J]. 光学学报, 2000, 20(1): 34-38.

    Guan B O, Yu Y L, Ge C F, et al. Theoretical studies on transmission characteristics of fiber grating Fabry-Perot cavity[J]. Acta Optica Sinica, 2000, 20(1): 34-38.

[31] Kang M S, Lee M S, Yong J C, et al. Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter[J]. Journal of Lightwave Technology, 2006, 24(4): 1812-1823.

[32] Horowitz M, Daisy R, Fischer B, et al. Linewidth-narrowing mechanism in lasers by nonlinear wave mixing[J]. Optics Letters, 1994, 19(18): 1406-1408.

[33] Zhang K, Kang J U. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser[J]. Optics Express, 2008, 16(18): 14173-14179.

[34] Li Y J, Huang L G, Gao L, et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring[J]. Optics Express, 2018, 26(21): 26896-26906.

[35] di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape[J]. Applied Optics, 2010, 49(25): 4801-4807.

[36] The lowest noise laser on earth[EB/OL]. http://www.orbitslightwave.com/assets/pdf/ETH-x-1xxx-x-x%20laser%20module.pdf

白燕, 延凤平, 冯亭, 韩文国, 张鲁娜, 程丹, 白卓娅, 温晓东. 基于保偏掺铥光纤饱和吸收体的2 μm波段超窄线宽光纤激光器[J]. 中国激光, 2019, 46(1): 0101003. Bai Yan, Yan Fengping, Feng Ting, Han Wenguo, Zhang Luna, Cheng Dan, Bai Zhuoya, Wen Xiaodong. Ultra-Narrow-Linewidth Fiber Laser in 2 μm Band Using Saturable Absorber Based on PM-TDF[J]. Chinese Journal of Lasers, 2019, 46(1): 0101003.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!