Matter and Radiation at Extremes, 2019, 4 (1): 015401, Published Online: Mar. 20, 2019  

Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments

Author Affiliations
1 Czech Technical University in Prague, Czech Republic
2 Institute of Physics of the Czech Academy of Sciences, ELI-Beamlines Project, Dolni Brezany, Czech Republic
Copy Citation Text

S. Lorenz, G. Grittani, E. Chacon-Golcher, C. M. Lazzarini, J. Limpouch, F. Nawaz, M. Nevrkla, L. Vilanova, T. Levato. Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments[J]. Matter and Radiation at Extremes, 2019, 4(1): 015401.

References

[1] J. M. Dawson, T. Tajima. Laser electron accelerator. Phys. Rev. Lett., 1979, 43(4): 267-270.

[2] J. Faure, et al.. A laser-plasma accelerator producing monoenergetic electron beams. Nature, 2004, 431: 541-544.

[3] C. G. R. Geddes, et al.. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 2004, 431: 538-541.

[4] S. P. D. Mangles, et al.. Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature, 2004, 431: 535-538.

[5] W. P. Leemans, et al.. GeV electron beams from a centimetre-scale accelerator. Nat. Phys., 2006, 2: 696-699.

[6] W. P. Leemans, et al.. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 2014, 113: 245002.

[7] O. Lundh, et al.. Few femtosecond, few kiloampere electron bunch produced by a laser plasma accelerator. Nat. Phys., 2011, 7: 219-222.

[8] E. Esarey, W. P. Leemans, C. B. Schroeder. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 2009, 81: 1229-1285.

[9] W. Lu, et al.. Generating multi-Gev electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top.--Accel. Beams, 2007, 10: 061301.

[10] A. J. Gonsalves, et al.. Tunable laser plasma accelerator based on longitudinal density tailoring. Nat. Phys., 2011, 7: 862-866.

[11] C. Thaury, et al.. Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep., 2015, 5: 16310.

[12] F. Salehi, et al.. MeV electron acceleration at 1 kHz with <10 mJ laser pulses. Front. Opt., 2017, 42: 215-218.

[13] D. Guenot, et al.. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photonics, 2017, 11: 293-296.

[14] J. D.Anderson, Jr., Modern Compressible Flow with Historical Perspective, 2nd ed. (Mc Graw Hill, 1989).

[15] V. Malka, S. Semushin. High density gas jet nozzle design for laser target production. Rev. Sci. Instrum., 2001, 72: 2961-2965.

[16] F. Sylla, et al.. Development and characterization of very dense submillimetric gas jets for laser-plasma interaction. Rev. Sci. Instrum., 2012, 83(3): 033507.

[17] F. Brandi, F. Giammanco. Temporal and spatial characterization of a pulsed gas jet by a compact high-speed high-sensitivity second-harmonic interferometer. Opt. Express, 2011, 19(25): 25479-25487.

[18] A. Adelmann, et al.. Real-time tomography of gas-jets with a Wollaston interferometer. Appl. Sci., 2018, 8(3): 443.

[19] J. Couperus, et al.. Tomographic characterisation of gas-jet targets for laser wakefield acceleration. Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, 830: 504-509.

[20] G. Grittani, et al.. High energy electrons from interaction with a structured gas-jet at FLAME. Nucl. Instrum. Methods Phys. Res., Sect. A, 2014, 740: 257-265.

[21] K.Schmid, “Supersonic micro-jets and their application to few-cycle-laser driven electron acceleration,” Ph.D. Thesis, Ludwig-Maximilians-Universitat, Munich, Germany, 2009.

S. Lorenz, G. Grittani, E. Chacon-Golcher, C. M. Lazzarini, J. Limpouch, F. Nawaz, M. Nevrkla, L. Vilanova, T. Levato. Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments[J]. Matter and Radiation at Extremes, 2019, 4(1): 015401.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!