中国激光, 2020, 47 (11): 1106005, 网络出版: 2020-11-02   

基于Wasserstein生成对抗网络的智能光通信 下载: 738次

Intelligent Optical Communication Based on Wasserstein Generative Adversarial Network
作者单位
空军工程大学信息与导航学院, 陕西 西安 710077
引用该论文

牟迪, 蒙文, 赵尚弘, 王翔, 刘文亚. 基于Wasserstein生成对抗网络的智能光通信[J]. 中国激光, 2020, 47(11): 1106005.

Mu Di, Meng Wen, Zhao Shanghong, Wang Xiang, Liu Wenya. Intelligent Optical Communication Based on Wasserstein Generative Adversarial Network[J]. Chinese Journal of Lasers, 2020, 47(11): 1106005.

参考文献

[1] Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747-3760.

[2] Hunt B R, Iler A L, Bailey C A, et al. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations[J]. Optical Engineering, 2018, 57(2): 024101.

[3] Liu J M, Wang P P, Zhang X K, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication[J]. Optics Express, 2019, 27(12): 16671-16688.

[4] Xu M M, Bu X Z, He Z L, et al. Atmospheric turbulence interference compensation for missile-borne infrared attitude measurement[J]. Infrared Physics & Technology, 2019, 97: 69-73.

[5] Pappu C S, Carroll T L, Flores B C. Simultaneous radar-communication systems using controlled chaos-based frequency modulated waveforms[J]. IEEE Access, 2020, 8: 48361-48375.

[6] O'Shea T. Hoydis J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563-575.

[7] Dörner S, Cammerer S, Hoydis J, et al. Deep learning based communication over the air[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 132-143.

[8] FelixA, CammererS, DörnerS, et al. OFDM-autoencoder for end-to-end learning of communications systems[C]∥2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 25-28, 2018, Kalamata, Greece. New York: IEEE, 2018.

[9] YeH, Li GY, Juang B H F, et al. Channel agnostic end-to-end learning based communication systems with conditional GAN[C]∥2018 IEEE Globecom Workshops (GC Wkshps), December 9-13, 2018, Abu Dhabi, United Arab Emirates. New York: IEEE, 2018.

[10] ArjovskyM, Bottou L. Towards principled methods for training generative adversarial networks[EB/OL]. ( 2017-01-17)[2020-06-04]. https:∥arxiv.org/abs/1701. 04862.

[11] 邹鹏, 赵一衡, 胡昉辰, 等. 基于机器学习的可见光通信信号处理研究现状[J]. 激光与光电子学进展, 2020, 57(1): 010001.

    Zou P, Zhao Y H, Hu F C, et al. Research status of machine learning based signal processing in visible light communication[J]. Laser & Optoelectronics Progress, 2020, 57(1): 010001.

[12] Xiang Y, Bao C C. A pa rallel-data-free speech enhancement method using multi-objective learning cycle-consistent generative adversarial network[J]. ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1826-1838.

[13] Fournier N, Guillin A. On the rate of convergence in Wasserstein distance of the empirical measure[J]. Probability Theory and Related Fields, 2015, 162(3/4): 707-738.

[14] 王铭淏, 元秀华, 李军, 等. 径向部分相干光束在各向异性非Kolmogorov湍流中的传输[J]. 光学学报, 2018, 38(3): 0306003.

    Wang M H, Yuan X H, Li J, et al. Propagation of radial partially coherent beams in anisotropic non-Kolmogorov turbulence[J]. Acta Optica Sinica, 2018, 38(3): 0306003.

[15] Baum DS, HansenJ, SaloJ, et al. An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM)[C]∥2005 IEEE 61st Vehicular Technology Conference, May 30-June 1, 2005, Stockholm, Sweden. New York: IEEE, 2005: 3132- 3136.

[16] Goodfellow IJ, Pouget-AbadieJ, MirzaM, et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Quebec, Canada. New York: Curran Associates, 2014, 2: 2672- 2680.

[17] YangZ, ChenW, WangF, et al. Improving neural machine translation with conditional sequence generative adversarial nets[EB/OL]. [2020-06-04].https:∥arxiv.org/pdf/1703.04887.pdf.

[18] 王林, 刘金铸, 段德平. QPSK系统仿真及误码率性能分析[J]. 电脑知识与技术, 2011, 7(9): 1995-1996.

    Wang L, Liu J Z, Duan D P. Simulation system of QPSK and performance analysis of BER[J]. Computer Knowledge and Technology, 2011, 7(9): 1995-1996.

[19] Duchi J C, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159.

[20] 靳永超, 陈雄斌, 毛旭瑞, 等. 调制度对可见光通信系统性能的影响[J]. 中国激光, 2019, 46(5): 0506001.

    Jin Y C, Chen X B, Mao X R, et al. Influence of modulation degree on performances of visible light communication system[J]. Chinese Journal of Lasers, 2019, 46(5): 0506001.

[21] Wang ZH, WuS, LiuC, et al. The regression of MNIST dataset based on convolutional neural network[M] ∥Hassanien A E, Azar A T, Gaber T, et al. The international conference on advanced machine learning technologies and applications (AMLTA2019). Advances in intelligent systems and computing. Cham: Springer, 2019, 921: 59- 68.

牟迪, 蒙文, 赵尚弘, 王翔, 刘文亚. 基于Wasserstein生成对抗网络的智能光通信[J]. 中国激光, 2020, 47(11): 1106005. Mu Di, Meng Wen, Zhao Shanghong, Wang Xiang, Liu Wenya. Intelligent Optical Communication Based on Wasserstein Generative Adversarial Network[J]. Chinese Journal of Lasers, 2020, 47(11): 1106005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!