激光与光电子学进展, 2017, 54 (3): 031602, 网络出版: 2017-03-08  

基于石墨烯的太赫兹方向图可重构天线 下载: 933次

Graphene-Based Antenna with Reconfigurable Radiation Pattern in Terahertz
耿莉 1,2谢亚楠 1,2原媛 1,2
作者单位
1 上海大学特种光纤及光接入网络重点实验室, 上海 200444
2 上海大学通信与信息工程学院, 上海 200444
引用该论文

耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602.

Geng Li, Xie Ya′nan, Yuan Yuan. Graphene-Based Antenna with Reconfigurable Radiation Pattern in Terahertz[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031602.

参考文献

[1] 李 欣, 徐 辉, 禹旭敏, 等. 太赫兹通信技术研究进展及空间应用展望[J]. 空间电子技术, 2013(4): 56-60.

    Li Xin, Xu Hui, Yu Xumin, et al. Progress of terahertz communication technology and space application outlook[J]. Space Electronic Technology, 2013(4): 56-60.

[2] 张 健, 邓贤进, 王 成, 等. 太赫兹高速无线通信: 体制、技术与验证系统[J]. 太赫兹科学与电子信息学报, 2014, 12(1): 1-13.

    Zhang Jian, Deng Xianjin, Wang Cheng, et al. Terahertz high speed wireless communications: systems, techniques and demonstrations[J]. Information and Electronic Engineering, 2014, 12(1): 1-13.

[3] 王 琳. 太赫兹空间通信系统的设计与性能分析[D]. 武汉: 华中科技大学, 2008: 1-2.

    Wang Lin. Design and performance analysis of terahertz space communication system[D]. Wuhan: Huazhong University of Science and Technology, 2008: 1-2.

[4] Huang F, Baumberg J J. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers[J]. Nano Letters, 2010, 10(5): 1787-1792.

[5] Berthelot J, Bouhelier A, Huang C, et al. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance[J]. Nano Letters, 2009, 9(11): 3914-3921.

[6] Xu G, Huang C M, Tazawa M, et al. Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance[J]. Journal of Applied Physics, 2008, 104(5): 053102.

[7] Abb M, Wang Y, Groot C H D, et al. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas[J]. Nature Communications, 2014, 5: 4869.

[8] 谢亚楠, 刘志坤, 耿 莉, 等. 石墨烯微波至太赫兹的特性及天线中的应用[J]. 光学学报, 2015, 35(s1): 116005.

    Xie Ya′nan, Liu Zhikun, Geng Li, et al. Properties of graphene and antenna applications in microwave to THz[J]. Acta Optica Sinica, 2015, 35(s1): 116005.

[9] 姜 娟, 黄 婷, 钟敏霖, 等. 激光与石墨烯相互作用的研究现状及发展趋势[J]. 中国激光, 2013, 40(2): 0201002.

    Jiang Juan, Huang Ting, Zhong Minlin, et al. Research status and development trends of interaction between laser and graphene[J]. Chinese J Lasers, 2013, 40(2): 0201002.

[10] 林 喆, 叶晓慧, 韩金鹏, 等. 基于飞秒激光切割的石墨烯图案化研究[J]. 中国激光, 2015, 42(7): 703002.

    Lin Zhe, Ye Xiaohui, Han Jinpeng, et al. Patterning of graphene by femtosecond laser cutting[J]. Chinese J Lasers, 2015, 42(7): 703002.

[11] Zheng X, Liu C. Recentdevelopment of THz technology and its application in radar and communication system[J]. Journal of Microwaves, 2011, 27(1): 1-5.

[12] Novoselov K S, Fal′Ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[13] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[14] Barone V, Hod O, Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons[J]. Nano Letters, 2006, 6(6): 2748-2754.

[15] Yao Y, Kats M A, Genevet P, et al. Broad electrical tuning of graphene-loaded plasmonic antennas[J]. Nano Letters, 2013, 13(3): 1257-1264.

[16] Dragoman M, Muller A A, Dragoman D, et al. Terahertz antenna based on graphene[J]. Journal of Applied Physics, 2010, 107(10): 104313.

[17] Huang Y, Wu L S, Tang M, et al. Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface[J]. IEEE Transactions on Nanotechnology, 2012, 11(4): 836-842.

[18] Esquius-Morote M, Gomez-Diaz J S, Perruisseau-Carrier J. Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz[J]. IEEE Transactions on Terahertz Science & Technology, 2013, 4(1): 116-122.

[19] Xu Z, Dong X, Bornemann J. Design of a reconfigurable MIMO system for THz communications based on graphene antennas[J]. IEEE Transactions on Terahertz Science & Technology, 2014, 4(5): 609-617.

[20] Hanson G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[21] Hanson G W. Dyadic Green′s functions for an anisotropic, non-local model of biased graphene[J]. IEEE Transactions on Antennas & Propagation, 2008, 56(3): 747-757.

[22] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics Condensed Matter, 2007, 19(2): 249-264.

[23] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B Condensed Matter, 2007, 76(15): 153410.

[24] Lin Y M, Jenkins K A, Valdesgarcia A, et al. Operation of graphene transistors at gigahertz frequencies[J]. Nano Letters, 2009, 9(1): 422-426.

[25] Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers[J]. Acs Nano, 2011, 5(7): 5855-5863.

[26] Andersen D R. Graphene-based long-wave infrared TM surface plasmon modulator[J]. Journal of the Optical Society of America B, 2010, 27(4): 818-823.

耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602. Geng Li, Xie Ya′nan, Yuan Yuan. Graphene-Based Antenna with Reconfigurable Radiation Pattern in Terahertz[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031602.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!