激光与光电子学进展, 2020, 57 (23): 231601, 网络出版: 2020-11-26  

石墨烯含量对熔融沉积成形复合试样吸波性能的影响 下载: 903次

Effect of Graphene Content on Microwave Absorption Properties of Fused Deposited Composite Samples
作者单位
1 三峡大学机械与动力学院, 湖北 宜昌 443002
2 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710054
引用该论文

吴海华, 邢垒, 蔡宇, 刘力, 范雪婷, 叶永盛, 李波, 田小永. 石墨烯含量对熔融沉积成形复合试样吸波性能的影响[J]. 激光与光电子学进展, 2020, 57(23): 231601.

Haihua Wu, Lei Xing, Yu Cai, Li Liu, Xueting Fan, Yongsheng Ye, Bo Li, Xiaoyong Tian. Effect of Graphene Content on Microwave Absorption Properties of Fused Deposited Composite Samples[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231601.

参考文献

[1] 庞建峰, 马喜君, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2): 7-12, 16.

    Pang J F, Ma X J, Xie X Y. Research progress of microwave absorption materials[J]. Electronic Components & Materials, 2015, 34(2): 7-12, 16.

[2] Chen T, Qiu J H, Zhu K J, et al. Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced graphene oxide nanocomposites[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(9): 3664-3673.

[3] Liu S H, Guo H J. Electromagnetic interference shielding and wave-absorbing materials[J]. Journal of Functional Materials and Devices, 2002, 8(3): 213-217.

[4] Zhang H B, Yan Q, Zheng W G, et al. Tough graphene-polymer microcellular foams for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 918-924.

[5] 李国显, 王涛, 薛海荣, 等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739.

    Li G X, Wang T, Xue H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739.

[6] Sun X, He J P, Li G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2013, 1(4): 765-777.

[7] 吴海华, 王剑, 蔡宇, 等. 石墨烯/聚乳酸3D打印复合线材制备及性能研究[J]. 炭素技术, 2018, 37(6): 61-65.

    Wu H H, Wang J, Cai Y, et al. Study on preparation and properties of graphene/polylactic acid 3D printing composite wire[J]. Carbon Techniques, 2018, 37(6): 61-65.

[8] Zhao Y T, Wu B, Zhang Y, et al. Transparent electromagnetic shielding enclosure with CVD graphene[J]. Applied Physics Letters, 2016, 109(10): 103507.

[9] Chen Z, Jin L, Hao W, et al. Synthesis and applications of three-dimensional graphene network structures[J]. Materials Today Nano, 2019, 5: 100027.

[10] Bai X, Zhai Y H, Zhang Y. Green approach to prepare graphene-based composites with high microwave absorption capacity[J]. The Journal of Physical Chemistry C, 2011, 115(23): 11673-11677.

[11] Bliokh K Y, Ivanov I P, Guzzinati G, et al. Theory and applications of free-electron vortex states[J]. Physics Reports, 2017, 690: 1-70.

[12] 姚永林. 超细FeNi合金粉热分解法制备及其吸波性能研究[D]. 长沙: 中南大学, 2014.

    Yao YL. Preparation of ultrafine feni alloy powders by thermal decomposition process and their microwave absorbing properties[D]. Changsha: Central South University, 2014.

[13] Chen Z P, Xu C, Ma C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300.

[14] Cheng Y, Li Z Y, Li Y, et al. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption[J]. Carbon, 2018, 127: 643-652.

[15] Wang C, Han X J, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98(7): 072906.

[16] Singh P, Babbar V K, Razdan A, et al. Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies[J]. Materials Science and Engineering B, 1999, 67(3): 132-138.

[17] 谢迪, 韦红余, 何敏, 等. 用于吸波材料的铁磁性/碳材料复合物[J]. 材料导报, 2017, 31(S2): 125-128, 149.

    Xie D, Wei H Y, He M, et al. Ferromagnetic carbon-based composites for wave absorbing materials[J]. Materials Review, 2017, 31(S2): 125-128, 149.

[18] Córdoba-Torres P. A general theory for the impedance response of dielectric films with a distribution of relaxation times[J]. Electrochimica Acta, 2018, 282: 892-904.

[19] 陈润华, 张笑梅, 李想, 等. 石墨烯/Fe3O4/乙烯基树脂复合材料的制备及电磁性能研究[J]. 材料开发与应用, 2018, 33(5): 96-103.

    Chen R H, Zhang X M, Li X, et al. Synthesis and electromagnetic properties of graphene/ Fe3O4/VER composite materials[J]. Development and Application of Materials, 2018, 33(5): 96-103.

[20] Wang Y, Wu X M, Zhang W Z, et al. One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties[J]. Materials Technology, 2017, 32(1): 32-37.

[21] Xia F, Liu J W, Gu D, et al. Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus[J]. Nanoscale, 2011, 3(9): 3860-3867.

吴海华, 邢垒, 蔡宇, 刘力, 范雪婷, 叶永盛, 李波, 田小永. 石墨烯含量对熔融沉积成形复合试样吸波性能的影响[J]. 激光与光电子学进展, 2020, 57(23): 231601. Haihua Wu, Lei Xing, Yu Cai, Li Liu, Xueting Fan, Yongsheng Ye, Bo Li, Xiaoyong Tian. Effect of Graphene Content on Microwave Absorption Properties of Fused Deposited Composite Samples[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231601.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!