Photonics Research, 2020, 8 (12): 12001949, Published Online: Dec. 1, 2020   

High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation Download: 690次

Author Affiliations
1 Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
2 Engineering Research Center on Visible Light Communication of Guangdong Province, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
3 Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
4 Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China
5 e-mail: zhuwg88@163.com
Copy Citation Text

Linqing Zhuo, Pengpeng Fan, Shuang Zhang, Yuansong Zhan, Yanmei Lin, Yu Zhang, Dongquan Li, Zhen Che, Wenguo Zhu, Huadan Zheng, Jieyuan Tang, Jun Zhang, Yongchun Zhong, Wenxiao Fang, Guoguang Lu, Jianhui Yu, Zhe Chen. High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation[J]. Photonics Research, 2020, 8(12): 12001949.

References

[1] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4: 37-40.

[2] M. Wood, P. Sun, R. M. Reano. Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits. Opt. Express, 2012, 20: 164-172.

[3] M. J. Paniccia. A perfect marriage: optics and silicon: integrated silicon-based photonics now running at 50  Ggps, with terabit speeds on the horizon. Opt. Photon., 2011, 6: 34-38.

[4] J. Chen, Q. Jing, F. Xu, Y. Lu. High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3-graphene hybrid structure. Optica, 2017, 4: 835-838.

[5] K. Chen, X. Zhou, X. Cheng, R. Qiao, Y. Cheng, C. Liu, Y. Xie, W. Yu, F. Yao, Z. Sun. Graphene photonic crystal fibre with strong and tunable light-matter interaction. Nat. Photonics, 2019, 13: 754-759.

[6] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang. Ultrafast all-optical graphene modulator. Nano Lett., 2014, 14: 955-959.

[7] S.-M. Tseng, C.-L. Chen. Side-polished fibers. Appl. Opt., 1992, 31: 3438-3447.

[8] A. Canales, X. Jia, U. P. Froriep, R. A. Koppes, C. M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol., 2015, 33: 277-284.

[9] S. Mukherjee, R. Maiti, A. K. Katiyar, S. Das, S. K. Ray. Novel colloidal MoS2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices. Sci. Rep., 2016, 6: 29016.

[10] K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol., 2013, 8: 826-830.

[11] N. Youngblood, Y. Anugrah, R. Ma, S. J. Koester, M. Li. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett., 2014, 14: 2741-2746.

[12] L. Dong, X. Liu, Y. Zhang, L. Zhuo, D. Li, W. Zhu, H. Zheng, J. Tang, J. Zhang, J. Yu. All-fiber multifunctional electrooptic prototype device with a graphene/PMMA (poly(methyl methacrylate)) hybrid film integrated on coreless side-polished fibers. ACS Appl. Electron. Mater., 2020, 2: 447-455.

[13] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. Thomson. Silicon optical modulators. Nat. Photonics, 2010, 4: 518-526.

[14] M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee. Broadband modulation of light by using an electro-optic polymer. Science, 2002, 298: 1401-1403.

[15] E.-S. Kang, T.-H. Lee, B.-S. Bae. Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films. Appl. Phys. Lett., 2002, 81: 1438-1440.

[16] V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. Ott, A. Ferrari, M. Romagnoli. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 2018, 12: 40-44.

[17] L. Yang, T. Hu, R. Hao, C. Qiu, C. Xu, H. Yu, Y. Xu, X. Jiang, Y. Li, J. Yang. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide. Opt. Lett., 2013, 38: 2512-2515.

[18] V. Sorianello, M. Midrio, M. Romagnoli. Design optimization of single and double layer graphene phase modulators in SOI. Opt. Express, 2015, 23: 6478-6490.

[19] M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, H. Kurz. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep., 2015, 5: 10967.

[20] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh. Broadband graphene polarizer. Nat. Photonics, 2011, 5: 411-415.

[21] C. T. Phare, Y.-H. D. Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 2015, 9: 511-514.

[22] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474: 64-67.

[23] X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, J. Zhao. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2: 468-471.

[24] S. Cakmakyapan, P. K. Lu, A. Navabi, M. Jarrahi. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl., 2018, 7: 20.

[25] J. E. Muench, A. Ruocco, M. A. Giambra, V. Miseikis, D. Zhang, J. Wang, H. F. Watson, G. C. Park, S. Akhavan, V. Sorianello. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett., 2019, 19: 7632-7644.

[26] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, Q. J. Wang. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun., 2013, 4: 1811.

[27] X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. Yang, Q. J. Wang. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2. Nanoscale, 2016, 8: 327-332.

[28] Y. Liu, Q. Xia, J. He, Z. Liu. Direct observation of high photoresponsivity in pure graphene photodetectors. Nanosc. Res. Lett., 2017, 12: 93.

[29] X. An, F. Liu, Y. J. Jung, S. Kar. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett., 2013, 13: 909-916.

[30] Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, F. Capasso. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett., 2014, 14: 3749-3754.

[31] A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics, 2013, 7: 892-896.

[32] D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon., 2014, 1: 781-784.

[33] T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B, 2009, 79: 245430.

[34] Q. Yang, C. Zhang, S. Wu, S. Li, Q. Bao, V. Giannini, S. A. Maier, X. Li. Photonic surface waves enabled perfect infrared absorption by monolayer graphene. Nano Energy, 2018, 48: 161-169.

[35] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. De Arquer, F. Gatti, F. H. Koppens. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 2012, 7: 363-368.

[36] I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. Koppens, G. Konstantatos. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat. Commun., 2016, 7: 11954.

[37] M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser. Microcavity-integrated graphene photodetector. Nano Lett., 2012, 12: 2773-2777.

[38] Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun., 2011, 2: 579.

[39] F. H. Koppens, D. E. Chang, F. J. Garcia de Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett., 2011, 11: 3370-3377.

[40] P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, J. Leuthold. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photon., 2018, 6: 154-161.

[41] Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu. High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sens. Actuators B Chem., 2018, 255: 57-69.

[42] W. H. Lee, J. Park, S. H. Sim, S. Lim, K. S. Kim, B. H. Hong, K. Cho. Surface-directed molecular assembly of pentacene on monolayer graphene for high-performance organic transistors. J. Am. Chem. Soc., 2011, 133: 4447-4454.

[43] H. H. Kim, Y. Chung, E. Lee, S. K. Lee, K. Cho. Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors. Adv. Mater., 2014, 26: 3213-3217.

[44] E. T. Hoppe, I. Hopp, M. Port, B. Menges, C. M. Papadakis. Optical properties of polybutadiene in the bulk and near a gold interface. Colloid Polym. Sci., 2012, 290: 1731-1741.

[45] X. Zhang, J. Qiu, X. Li, J. Zhao, L. Liu. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl. Opt., 2020, 59: 2337-2344.

[46] H. Zheng, B. Huang, Y. Li, R. Zhang, X. Gu, Z. Li, H. Lin, W. Zhu, J. Tang, H. Guan, H. Lu, Y. Zhong, J. Fang, Y. Luo, J. Zhang, J. Yu, F. K. Tittel, Z. Chen. Residual thickness enhanced core-removed D-shaped single-mode fiber and its application for VOC evaporation monitoring. Opt. Express, 2020, 28: 15641-15651.

[47] G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, W. Mai. Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small, 2019, 15: 1902135.

[48] G. Deokar, J. Avila, I. Razado-Colambo, J. L. Codron, C. Boyaval, E. Galopin, M. C. Asensio, D. Vignaud. Towards high quality CVD graphene growth and transfer. Carbon, 2015, 89: 82-92.

[49] L. Ye, P. Wang, W. Luo, F. Gong, L. Liao, T. Liu, L. Tong, J. Zang, J. Xu, W. Hu. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 2017, 37: 53-60.

[50] A. Levi, M. Kirshner, O. Sinai, E. Peretz, O. Meshulam, A. Ghosh, N. Gotlib, C. Stern, S. Yuan, F. Xia, D. Naveh. Graphene Schottky varactor diodes for high-performance photodetection. ACS Photon., 2019, 6: 1910-1915.

[51] C.-H. Liu, Y.-C. Chang, T. B. Norris, Z. Zhong. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol., 2014, 9: 273-278.

[52] N. A. Riza, J. P. La Torre, M. J. Amin. CAOS-CMOS camera. Opt. Express, 2016, 24: 13444-13458.

[53] Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S.-J. Han, H. Wang, Q. Xia, T.-P. Ma, T. Mueller, F. Xia. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett., 2016, 16: 4648-4655.

[54] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 2009, 19: 3077-3083.

[55] X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express, 2011, 19: 9401-9407.

[56] L. Tong, X. Huang, P. Wang, L. Ye, M. Peng, L. An, Q. Sun, Y. Zhang, G. Yang, Z. Li, F. Zhong, F. Wang, Y. Wang, M. Motlag, W. Wu, W. Hu. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun., 2020, 11: 2308.

[57] T. Winzer, A. Knorr, E. Malic. Carrier multiplication in graphene. Nano Lett., 2010, 10: 4839-4843.

[58] Y. Liu, Y. Liu, S. Qin, Y. Xu, R. Zhang, F. Wang. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res., 2017, 10: 1880-1887.

[59] L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, Y.-H. Lo. An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process. Appl. Phys. Lett., 2017, 111: 101104.

[60] X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, Z. Zou. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano, 2011, 5: 4310-4318.

[61] E. H. Huisman, A. G. Shulga, P. J. Zomer, N. Tombros, D. Bartesaghi, S. Z. Bisri, M. A. Loi, L. J. A. Koster, B. J. van Wees. High gain hybrid graphene-organic semiconductor phototransistors. ACS Appl. Mater. Interfaces, 2015, 7: 11083-11088.

[62] M. Romagnoli, V. Sorianello, M. Midrio, F. H. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, A. C. Ferrari. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater., 2018, 3: 392-414.

[63] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9: 780-793.

Linqing Zhuo, Pengpeng Fan, Shuang Zhang, Yuansong Zhan, Yanmei Lin, Yu Zhang, Dongquan Li, Zhen Che, Wenguo Zhu, Huadan Zheng, Jieyuan Tang, Jun Zhang, Yongchun Zhong, Wenxiao Fang, Guoguang Lu, Jianhui Yu, Zhe Chen. High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation[J]. Photonics Research, 2020, 8(12): 12001949.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!