Photonics Research, 2020, 8 (9): 09001475, Published Online: Aug. 24, 2020   

Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides Download: 643次

Author Affiliations
1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, CH-1015 Lausanne, Switzerland
Copy Citation Text

Edgars Nitiss, Boris Zabelich, Ozan Yakar, Junqiu Liu, Rui Ning Wang, Tobias J. Kippenberg, Camille-Sophie Brès. Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides[J]. Photonics Research, 2020, 8(9): 09001475.

References

[1] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 2010, 4: 535-544.

[2] E. Timurdogan, C. V. Poulton, M. J. Byrd, M. R. Watts. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 2017, 11: 200-206.

[3] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 2019, 13: 158-169.

[4] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 2013, 7: 597-607.

[5] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Lončar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5: 1438-1441.

[6] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562: 101-104.

[7] C. Xiong, W. H. P. Pernice, H. X. Tang. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett., 2012, 12: 3562-3568.

[8] B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong, C. Lee. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics. Opt. Lett., 2019, 44: 73-76.

[9] A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, H. X. Tang. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett., 2018, 113: 131102.

[10] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 2019, 6: 1455-1460.

[11] M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 1992, 28: 2631-2654.

[12] A. Billat, D. Grassani, M. H. P. Pfeiffer, S. Kharitonov, T. J. Kippenberg, C. S. Brès. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun., 2017, 8: 1016.

[13] E. Nitiss, T. Liu, D. Grassani, M. Pfeiffer, T. J. Kippenberg, C.-S. Brès. Formation rules and dynamics of photo-induced χ(2) gratings in silicon nitride waveguides. ACS Photon., 2019, 7: 147-153.

[14] M. A. G. Porcel, J. Mak, C. Taballione, V. K. Schermerhorn, J. P. Epping, P. J. M. van der Slot, K.-J. Boller. Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides. Opt. Express, 2017, 25: 33143-33159.

[15] M. A. G. Porcel, J. Mak, C. Taballione, V. K. Schermerhorn, J. P. Epping, P. J. M. van der Slot, K.-J. Boller. Photoinduced χ(2) for second harmonic generation in stoichiometric silicon nitride waveguides. Proc. SPIE, 2017, 10228: 102280R.

[16] D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, S. B. Papp. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics, 2019, 13: 494-499.

[17] D. Z. Anderson, V. Mizrahi, J. E. Sipe. Model for second-harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites. Opt. Lett., 1991, 16: 796-798.

[18] N. B. Baranova, B. Y. Zel’dovich, A. N. Chudinov, A. A. Shul’ginov. Theory and observation of polar asymmetry of photoionization in a field with <E3>≠0. Zh. Eksp. Teor. Fiz., 1990, 98: 1857-1868.

[19] E. M. Dianov, D. S. Starodubov. Photoinduced generation of the second harmonic in centrosymmetric media. Quantum Electron., 1995, 25: 395-407.

[20] E. Nitiss, O. Yakar, A. Stroganov, C.-S. Brès. Highly tunable second-harmonic generation in all-optically poled silicon nitride waveguides. Opt. Lett., 2020, 45: 1958-1961.

[21] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 2015, 40: 5117-5120.

[22] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Brès, T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 2018, 12: 330-335.

[23] D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, C.-S. Brès. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nat. Commun., 2019, 10: 1553.

[24] J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich, K.-J. Boller. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express, 2015, 23: 19596-19604.

[25] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332: 555-559.

[26] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 2018, 5: 1347-1353.

[27] X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 2017, 4: 619-624.

[28] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 2016, 3: 1171-1180.

[29] Z. Ye, K. Twayana, P. A. Andrekson, V. Torres-Company. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 2019, 27: 35719-35727.

[30] RamelowS.FarsiA.ClemmenS.OrquizaD.LukeK.LipsonM.GaetaA. L., “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

[31] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351: 1176-1180.

[32] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lončar, M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, 7: 40-46.

[33] M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 2018, 5: 884-892.

[34] L. Cai, A. V. Gorbach, Y. Wang, H. Hu, W. Ding. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep., 2018, 8: 12478.

[35] G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, J. L. Hall, S. T. Cundiff. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science, 1999, 286: 1507-1512.

[36] H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B, 1999, 69: 327-332.

[37] R. Luo, Y. He, H. Liang, M. Li, Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 2018, 5: 1006-1011.

[38] X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi, A. M. Weiner. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express, 2016, 24: 687-698.

Edgars Nitiss, Boris Zabelich, Ozan Yakar, Junqiu Liu, Rui Ning Wang, Tobias J. Kippenberg, Camille-Sophie Brès. Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides[J]. Photonics Research, 2020, 8(9): 09001475.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!