激光与光电子学进展, 2019, 56 (14): 140001, 网络出版: 2019-07-12   

低维黑磷制备及其在太阳电池中的应用研究进展 下载: 1809次

Preparation of Low-Dimensional Black Phosphorus and its Application in Solar Cells
余夏辉 1,2杜凯翔 1,2杨培志 1,2,*
作者单位
1 可再生能源材料先进技术与制备教育部重点实验室, 云南 昆明 650500
2 云南师范大学太阳能研究所, 云南 昆明 650500
引用该论文

余夏辉, 杜凯翔, 杨培志. 低维黑磷制备及其在太阳电池中的应用研究进展[J]. 激光与光电子学进展, 2019, 56(14): 140001.

Xiahui Yu, Kaixiang Du, Peizhi Yang. Preparation of Low-Dimensional Black Phosphorus and its Application in Solar Cells[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140001.

参考文献

[1] Bridgman P W. Two new modifications of phosphorus[J]. Journal of the American Chemical Society, 1914, 36(7): 1344-1363.

[2] Shirotani I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties[J]. Molecular Crystals and Liquid Crystals, 1982, 86(1): 203-211.

[3] Endo S, Akahama Y, Terada S I, et al. Growth of large single crystals of black phosphorus under high pressure[J]. Japanese Journal of Applied Physics, 1982, 21(8): L482-L484.

[4] Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19(18): 2465-2468.

[5] Lange S, Schmidt P, Nilges T. Au3SnP7@black phosphorus: an easy access to black phosphorus[J]. Inorganic Chemistry, 2007, 46(10): 4028-4035.

[6] Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

[7] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

[8] Lu W L, Nan H Y, Hong J H, et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization[J]. Nano Research, 2014, 7(6): 853-859.

[9] Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352.

[10] Brent J R, Savjani N, Lewis E A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341.

[11] Guo Z N, Zhang H, Lu S B, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002.

[12] Yasaei P, Kumar B, Foroozan T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Advanced Materials, 2015, 27(11): 1887-1892.

[13] Zhu C Y, Xu F, Zhang L, et al. Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing[J]. Chemistry-A European Journal, 2016, 22(22): 7357-7362.

[14] Kang J, Wells S A, Wood J D, et al. Stable aqueous dispersions of optically and electronically active phosphorene[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11688-11693.

[15] Ambrosi A, Sofer Z, Pumera M. Electrochemical exfoliation of layered black phosphorus into phosphorene[J]. Angewandte Chemie International Edition, 2017, 56(35): 10443-10445.

[16] Zhang X, Xie H M, Liu Z D, et al. Black phosphorus quantum dots[J]. Angewandte Chemie International Edition, 2015, 54(12): 3653-3657.

[17] Sun Z, Xie H, Tang S, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents[J]. Angewandte Chemie International Edition, 2015, 54(39): 11526-11530.

[18] Xu Y H, Wang Z T, Guo Z N, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Advanced Optical Materials, 2016, 4(8): 1223-1229.

[19] Smith J B, Hagaman D, Ji H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 215602.

[20] Yang Z B, Hao J H, Yuan S G, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition[J]. Advanced Materials, 2015, 27(25): 3748-3754.

[21] 严金华, 徐帅锋, 沈旭辉, 等. 基于PbSe量子点的全光纤光功率密度和温度传感器[J]. 激光与光电子学进展, 2018, 55(10): 100602.

    Yan J H, Xu S F, Shen X H, et al. All fiber-optic sensor measuring optical power density and temperature based on PbSe quantum dots[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100602.

[22] 陈雯柏, 马航, 叶继兴, 等. 量子点发光二极管的研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

    Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

[23] 谭华, 倪朕伊, 皮孝东, 等. 硅量子点在光电器件中的应用研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030006.

    Tan H, Ni Z Y, Pi X D, et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.

[24] Chen X L, Wu Y Y, Wu Z F, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations[J]. Nature Communications, 2015, 6: 7315.

[25] Deng Y X, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. ACS Nano, 2014, 8(8): 8292-8299.

[26] Dai J, Zeng X C. Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(7): 1289-1293.

[27] Huang L, Huo N J, Li Y, et al. Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals p-n heterostructure[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2483-2488.

[28] Huang L, Li Y, Wei Z M, et al. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure[J]. Scientific Reports, 2015, 5: 16448.

[29] Bai L Y, Sun L Q, Wang Y, et al. Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells[J]. Journal of Materials Chemistry A, 2017, 5(18): 8280-8286.

[30] Yang Y, Gao J, Zhang Z, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells[J]. Advanced Materials, 2016, 28(40): 8937-8944.

[31] Lin S H, Liu S H, Yang Z B, et al. Solution-processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics[J]. Advanced Functional Materials, 2016, 26(6): 864-871.

[32] Li Q D, Yang J W, Huang C, et al. Solution processed black phosphorus quantum dots for high performance silicon/organic hybrid solar cells[J]. Materials Letters, 2018, 217: 92-95.

[33] Zhao Y, Chen T L, Xiao L G, et al. Facile integration of low-cost black phosphorus in solution-processed organic solar cells with improved fill factor and device efficiency[J]. Nano Energy, 2018, 53: 345-353.

[34] Huang H, Li J, Yi Y. et al. In situ growth of all-inorganic perovskite nanocrystals on black phosphorus nanosheets[J]. Chemical Communications, 2018, 54(19): 2365-2368.

[35] Muduli S K, Varrla E, Kulkarni S A, et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells[J]. Journal of Power Sources, 2017, 371: 156-161.

[36] Chen W, Li K W, Wang Y, et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 591-598.

[37] Fu N Q, Huang C, Lin P, et al. Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(19): 8886-8894.

[38] Li K W, Wan Z Y, Lin X N. Black phosphorus quantum dots as doping material to increase efficiency of typical planar hybrid perovskite solar cells[J]. DEStech Transactions on Materials Science and Engineering, 2017, 10824.

余夏辉, 杜凯翔, 杨培志. 低维黑磷制备及其在太阳电池中的应用研究进展[J]. 激光与光电子学进展, 2019, 56(14): 140001. Xiahui Yu, Kaixiang Du, Peizhi Yang. Preparation of Low-Dimensional Black Phosphorus and its Application in Solar Cells[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!