激光与光电子学进展, 2020, 57 (7): 071604, 网络出版: 2020-03-31  

掺Yb稀土钙氧硼酸盐晶体激光器研究进展 下载: 1226次特邀综述

Research of Yb-Doped Rare-Earth Calcium Oxyborate Crystal Lasers
作者单位
1 青岛大学物理科学学院, 山东 青岛 266071
2 海军航空大学航空基础学院, 山东 烟台 264001
引用该论文

刘芬芬, 曹枢旋, 刘均海. 掺Yb稀土钙氧硼酸盐晶体激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 071604.

Fenfen Liu, Shuxuan Cao, Junhai Liu. Research of Yb-Doped Rare-Earth Calcium Oxyborate Crystal Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071604.

参考文献

[1] Mougel F, Dardenne K, Aka G, et al. Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal[J]. Journal of the Optical Society of America B, 1999, 16(1): 164-172.

[2] Aron A, Aka G, Viana B, et al. Spectroscopic properties and laser performances of Yb∶YCOB and potential of the Yb: LaCOB material[J]. Optical Materials, 2001, 16(1/2): 181-188.

[3] Kr nkel C, Peters R, Petermann K, et al. Efficient continuous-wave thin disk laser operation of Yb: Ca4YO(BO3)3 in E∥Z and E∥X orientations with 26 W output power[J]. Journal of the Optical Society of America B, 2009, 26(7): 1310-1314.

[4] Hammons D A, Eichenholz J M, Ye Q, et al. Laser action in Yb 3+: YCOB (Yb 3+: YCa4O(BO3)3)[J]. Optics Communications, 1998, 156(4/5/6): 327-330.

[5] Krupke W F. Ytterbium solid-state lasers. The first decade[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1287-1296.

[6] Zhang H, Meng X, Wang P, et al. Slope efficiency of up to 73% for Yb∶Ca4 YO(BO3)3 crystal laser pumped by a laser diode[J]. Applied Physics B: Lasers and Optics, 1999, 68(6): 1147-1149.

[7] Shah L, Ye Q, Eichenholz J M, et al. Laser tunability in Yb 3+:YCa4O(BO3)3 (Yb∶YCOB)[J]. Optics Communications, 1999, 167: 149-153.

[8] Druon F. Aug F, Balembois F, et al. Efficient, tunable, zero-line diode-pumped, continuous-wave Yb 3+: Ca4LnO(BO3)3 (Ln=Gd, Y) lasers at room temperature and application to miniature lasers[J]. Journal of the Optical Society of America B, 2000, 17(1): 18-22.

[9] Valentine G J, Kemp A J. Birkin D J L, et al. Femtosecond Yb∶YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror[J]. Electronics Letters, 2000, 36(19): 1621-1623.

[10] Druon F, Balembois F, Georges P, et al. 90 fs pulse generation from a mode-locked diode-pumped Yb 3+:Ca4GdO(BO3)3 laser[J]. Optics Letters, 2000, 25(6): 423-425.

[11] Khamaganova T N, Trunov V K, Dzhurinskiy B F. Crystal structure of calcium samarium oxyborate Sm2Ca8O2(BO3)6[J]. Russian Journal of Inorganic Chemistry, 1991, 36(4): 855-857.

[12] Norrestam R, Nygren M, Bovin J O. Structural investigations of new calcium - rare earth (R) oxyborates with the composition Ca4RO(BO3)3[J]. Chemistry of Materials, 1992, 4(3): 737-743.

[13] Dirksen G J, Blasse G. Tetracalcium gadolinium oxoborate (Ca4GdO(BO3)3) as a new host lattice for luminescent materials[J]. Journal of Alloys and Compounds, 1993, 191(1): 121-126.

[14] Aka G, Kahn-Harari A, Vivien D, et al. ChemInform abstract: a new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB)[J]. ChemInform, 2010, 28(1): 727-736.

[15] Iwai M, Kobayashi T, Furuya H, et al. Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No. 3A): L276-L279.

[16] Lebedev V A, Voroshilov I V, Gavrilenko A N, et al. Kinetic and spectroscopic investigations of Yb∶YCa4O(BO3)3 (Yb∶YCOB) single crystals[J]. Optical Materials, 2000, 14(2): 171-173.

[17] Balembois F, Georges P, et al. Efficient and tunable continuous-wave diode-pumped Yb 3+: Ca4GdO(BO3)3 laser[J]. Applied Optics, 1999, 38(6): 976-979.

[18] Ch nais S, Druon F, Balembois F, et al. Multiwatt, tunable, diode-pumped CW Yb: GdCOB laser[J]. Applied Physics B, 2001, 72(4): 389-393.

[19] Auge F, Druon F, Balembois F, et al. Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb 3+-doped Ca4GdO(BO3)3 (Yb: GdCOB) laser[J]. IEEE Journal of Quantum Electronics, 2000, 36(5): 598-606.

[20] Liu J H, Zhang H J, Wang J Y, et al. Output-coupling-dependent polarization state of a continuous-wave Yb∶YCa4O(BO3)3 laser[J]. Optics Letters, 2007, 32(20): 2909-2911.

[21] Liu J, Han W, Zhang H, et al. Comparison of laser performance of Yb∶YCa4O(BO3)3 crystals cut along the principal optical axes[J]. Applied Physics B, 2008, 91(2): 329-332.

[22] Liu J H, Yang H W, Zhang H J, et al. Anisotropy in laser performance of Yb: GdCa4O(BO3)3 crystal[J]. Applied Optics, 2008, 47(29): 5436-5441.

[23] Heckl O H. Kr nkel C, Baer C R E, et al. Continuous-wave and modelocked Yb∶YCOB thin disk laser: first demonstration and future prospects[J]. Optics Express, 2010, 18(18): 19201-19208.

[24] Yoshida A, Schmidt A, Zhang H J, et al. 42 fs diode-pumped Yb: Ca4YO(BO3)3 oscillator[J]. Optics Express, 2010, 18(23): 24325-24330.

[25] Yoshida A, Schmidt A, Petrov V, et al. Diode-pumped mode-locked Yb∶YCOB laser generating 35 fs pulses[J]. Optics Letters, 2011, 36(22): 4425-4427.

[26] Liu J H, Dai Q B, Wan Y, et al. The potential of Yb∶YCa4O(BO3)3 crystal in generating high-energy laser pulses[J]. Optics Express, 2013, 21(8): 9365-9376.

[27] Liu J H, Wan Y, Dai Q B, et al. Efficient high-energy passively Q-switched Yb: GdCa4O(BO3)3 laser[J]. Applied Optics, 2013, 52(12): 2676-2681.

[28] Liu J H, Han W J, Chen X W, et al. Continuous-wave and passive Q-switching laser performance of Yb:YCa4O(BO3)3 crystal[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 348-355.

[29] Chen X W, Wang L S, Liu J H, et al. High-power CW and passively Q-switched laser operation of Yb∶GdCa4O(BO3)3 crystal[J]. Optics & Laser Technology, 2016, 79: 74-78.

[30] Chen X W, Han W J, Xu H H, et al. High-power passively Q-switched Yb∶YCa4O(BO3)3 laser with a GaAs crystal plate as saturable absorber[J]. Applied Optics, 2015, 54(11): 3225-3230.

[31] Chen X W, Wang L S, Han W J, et al. High-energy passively Q-switched operation of Yb: GdCa4O(BO3)3 laser with a GaAs semiconductor saturable absorber[J]. Optics Express, 2015, 23(23): 30357-30363.

[32] Liu J H, Chen X W, Han W J, et al. Passively Q-switched Yb∶YCa4O(BO3)3/GaAs laser generating 1 mJ of pulse energy[J]. IEEE Photonics Technology Letters, 2016, 28(10): 1104-1106.

[33] 陈晓雯. Yb∶ReCOB晶体的高功率/高能量脉冲激光特性研究[D]. 青岛:青岛大学, 2016: 39- 57.

    Chen XW. Yb∶ReCOB crystal characteristics of the high power /high energy pulse laser[D]. Qingdao: Qingdao University, 2016: 39- 57.

[34] Yang J N, Ma Y J, Tian K, et al. High-power passive Q-switching performance of a Yb∶YCa4O(BO3)3 laser with a few-layer Bi2Te3 topological insulator as a saturable absorber[J]. Optical Materials Express, 2018, 8(10): 3146-3154.

[35] Ma Y J, Tian K, Dou X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb∶YCOB microchip laser[J]. Optics Express, 2018, 26(19): 25147-25155.

[36] Li Y H, Liu M J, Chen J X, et al. Passively Q-switched laser action of Yb: LaCa4O(BO3)3 crystal at 1.07-1.08 μm induced by 2D Bi2Te3 topological insulator[J]. Applied Physics B, 2019, 125(7): 131.

[37] Tian K, Yang J N, Yi H Y, et al. High-power Yb∶YCa4O(BO3)3 laser passively Q-switched by a few-layer WS2 saturable absorber[J]. Optics & Laser Technology, 2019, 113: 1-5.

[38] Chen X W, Xu H H, Guo Y F, et al. Acousto-optic Q-switching laser performance of Yb: GdCa4O(BO3)3 crystal[J]. Applied Optics, 2015, 54(24): 7142-7147.

[39] Chen X W, Xu H H, Han W J, et al. Compact repetitively Q-switched Yb∶YCa4O(BO3)3 laser with an acousto-optic modulator[J]. Optics & Laser Technology, 2015, 70: 128-130.

[40] Khaled F, Loiseau P, Aka G, et al. Rise in power of Yb∶YCOB for green light generation by self-frequency doubling[J]. Optics Letters, 2016, 41(15): 3607-3610.

[41] Fang Q N, Lu D Z, Yu H H, et al. Self-frequency-doubled vibronic yellow Yb∶YCOB laser at the wavelength of 570 nm[J]. Optics Letters, 2016, 41(5): 1002-1005.

[42] Lu D Z, Fang Q N, Yu X S, et al. Power scaling of the self-frequency-doubled quasi-two-level Yb∶YCOB laser with a 30% slope efficiency[J]. Optics Letters, 2019, 44(21): 5157-5160.

[43] Hellström J E, Pasiskevicius V, Laurell F, et al. Laser performance of Yb: GdCa4O(BO3)3 compared to Yb: KGd(WO4)2 under diode-bar pumping[J]. Laser Physics, 2007, 17(10): 1204-1208.

[44] Liu J H, Mateos X, Zhang H J, et al. Characteristics of a continuous-wave Yb: GdVO4 laser end pumped by a high-power diode[J]. Optics Letters, 2006, 31(17): 2580-2582.

[45] Liu J H, Wan Y, Tian X P, et al. Polarization state of a continuous-wave Yb:NaY(WO4)2 disordered crystal laser[J]. Laser Physics Letters, 2013, 10(7): 075003.

[46] Yuan H L, Wang L S, Ma Y J, et al. Anisotropy in spectroscopic and laser properties of Yb: Sr3La2(BO3)4 disordered crystal[J]. Optical Materials Express, 2017, 7(9): 3251-3260.

[47] Ji Y X, Cao J F, Tu C Y. Polarized spectral properties of a notable Yb 3+: LaCa4O(BO3)3 crystal[J]. Optical Materials, 2013, 35(12): 2698-2702.

[48] Ji Y X, Cao J F, Xu J L, et al. Output-coupling-dependent laser operation of monoclinic Yb: Ca4LaO(BO3)3 crystal[J]. Applied Optics, 2013, 52(21): 5079-5082.

[49] Ji Y X, Cao J F, Xu J L, et al. 24 W highly efficient simultaneous dual-wavelength laser operation of monoclinic Yb 3+: Ca4LaO(BO3)3 crystals[J]. Applied Optics, 2014, 53(24): 5517-5521.

[50] Zhang Y, Wei B, Wang G F. Spectroscopic properties of Yb 3+-doped Ca4Gd0.5Y0.5O(BO3)3 single crystals[J]. Physica Status Solidi (a), 2010, 207(6): 1468-1473.

[51] Chen X W, Xu H H, Han W J, et al. Spectroscopic properties and high-power laser operation of Yb0.14∶Y0.77Gd0.09Ca4O(BO3)3 mixed crystal[J]. Optical Materials, 2016, 55: 33-37.

[52] Zhong D G, Teng B, Kong W J, et al. Growth, structure, spectroscopic and continuous-wave laser properties of a new Yb: GdYCOB crystal[J]. Journal of Alloys and Compounds, 2017, 692: 413-419.

[53] Ma Y J, Tian K, Li Y H, et al. Anisotropic lasing properties in the 1059-1086 nm range of Yb∶YCa4O(BO3)3 crystal[J]. Optical Materials Express, 2018, 8(4): 727-735.

[54] Ma Y J, Li Y H, Dou X D, et al. Free-running performance of Yb0.14:Y0.77Gd0.09Ca4O(BO3)3 mixed crystal laser operating around 1084 nm[J]. Optics Communications, 2018, 427: 244-249.

[55] Li Y H, Liu M J, Han W J, et al. High-power dual-polarization laser operation of Yb: LaCa4O(BO3)3 crystal[J]. Optics Communications, 2019, 451: 192-196.

[56] Chen L J, Wang Z P, Yu H H, et al. High-power single- and dual-wavelength Nd: GdVO4 lasers with potential application for the treatment of telangiectasia[J]. Applied Physics Express, 2012, 5(11): 112701.

[57] Loiko P, Serres J M, Mateos X, et al. Thermal lensing and multiwatt microchip laser operation of Yb∶YCOB crystals[J]. IEEE Photonics Journal, 2016, 8(3): 1-12.

[58] Xia J, Liu H L, Hu Z H, et al. Pure-three-level Yb: GdCOB CW laser at 976 nm[J]. Optics Letters, 2018, 43(16): 3981-3984.

[59] KoechnerW. Solid-state laser engineering[M]. 6th ed. Berlin:Springer, 2006, 488- 533.

[60] Liang H C, Huang J Y, Su K W, et al. Passively Q-switched Yb 3+:YCa4O(BO3)3 laser with InGaAs quantum wells as saturable absorbers[J]. Applied Optics, 2007, 46(12): 2292-2296.

[61] 窦晓丹. 四方结构LuPO4和LuVO4晶体中Yb离子的激光特性研究[D]. 青岛:青岛大学, 2019: 37- 54.

    Dou XD. Laser properties of Yb ions in tetragonal LuPO4 and LuVO4 crystals[D]. Qingdao: Qingdao University, 2019: 37- 54.

[62] Dou X D, Wang L S, Ma Y J, et al. Generation of pulsed laser radiation at 1002 nm with a quantum defect of 2.6%[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.

[63] Dou X D, Wang L S, Han W J, et al. Near-IR 1 μm high-repetition-rate pulsed radiation generated with an Yb∶LuPO4miniature crystal rod laser[J]. Optics Communications, 2018, 420: 90-94.

[64] Han W J, Ma Y J, Dou X D, et al. Passive Q-switching laser properties of Yb: Re3Ga5O12 (Re=Y, Lu, Gd) garnets with GaAs semiconductor saturable absorber[J]. Optics Communications, 2018, 423: 1-5.

[65] Dou X D, Ma Y J, Zhu M, et al. Multi-watt sub-30 ns passively Q-switched Yb∶LuPO4/WS2 miniature laser operating under high output couplings[J]. Optics Letters, 2018, 43(15): 3666-3669.

[66] Yang J N, Tian K, Li Y H, et al. Few-layer Bi2Te3: an effective 2D saturable absorber for passive Q-switching of compact solid-state lasers in the 1 μm region[J]. Optics Express, 2018, 26(17): 21379-21389.

[67] Tian K, Li Y H, Yang J N, et al. Passive Q-switching of an Yb: KLu(WO4)2 laser with 2D saturable absorbers of MoS2 and WS2: Scaling the output power to 2-W level[J]. Optics Communications, 2019, 436: 42-46.

[68] Li Y H, Xu Y F, Xu G Y, et al. Performance of an Yb: LaCa4O(BO3)3 crystal laser at 1.03-1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Physics & Technology, 2019, 99: 167-171.

[69] Tian K, Li Y H, Yang J N, et al. Passively Q-switched Yb∶KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Applied Physics B, 2019, 125(2): 24.

[70] Yang J N, Li Y H, Tian K, et al. Passive Q-switching of an Yb∶GdCa4O(BO3)3 laser induced by a few-layer Bi2Te3 topological insulator saturable absorber[J]. Laser Physics Letters, 2018, 15(12): 125802.

[71] Gao Z Y, Zhu J F, Tian W L, et al. Generation of 73 fs pulses from a diode pumped Kerr-lens mode-locked Yb∶YCa4O(BO3)3 laser[J]. Optics Letters, 2014, 39(20): 5870-5872.

[72] Gao Z Y, Zhu J F, Wu Z M, et al. Tunable second harmonic generation from a Kerr-lens mode-locked Yb∶YCa4O(BO3)3femtosecond laser[J]. Chinese Physics B, 2017, 26(4): 044202.

[73] Lin H F, Zhang G, Zhang L Z, et al. SESAM mode-locked Yb: GdYCOB femtosecond laser[J]. Optical Materials Express, 2017, 7(10): 3791-3795.

[74] Liu J H, Wang C Q, Zhang S J, et al. Investigation on intracavity second-harmonic generation at 1.06 μm in YCa4O(BO3)3 by using an end-pumped Nd∶YVO4 laser[J]. Optics Communications, 2000, 182(1/2/3): 187-191.

[75] Liu J, Xu X, Wang C Q, et al. Intracavity second-harmonic generation of 1.06 μm in GdCa4O(BO3)3 crystals[J]. Applied Physics B, 2001, 72(2): 163-166.

[76] Fang Q N, Lu D Z, Yu H H, et al. Anisotropic thermal properties of Yb∶YCOB crystal influenced by doping concentrations[J]. Optical Materials Express, 2019, 9(3): 1501-1512.

刘芬芬, 曹枢旋, 刘均海. 掺Yb稀土钙氧硼酸盐晶体激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 071604. Fenfen Liu, Shuxuan Cao, Junhai Liu. Research of Yb-Doped Rare-Earth Calcium Oxyborate Crystal Lasers[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071604.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!