中国激光, 2021, 48 (16): 1606001, 网络出版: 2021-07-30   

基于光栅局域温度控制的高精度多相移的产生和滤波器的制备 下载: 747次

High-Precision Multiphase Shifts Generation and Filter Fabrication Based on Grating Local Temperature Control
作者单位
1 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国空间技术研究院西安分院空间微波技术国家级重点实验室, 陕西 西安 710100
引用该论文

梁虹, 应康, 王迪, 魏金金, 李璇, 皮浩洋, 魏芳, 蔡海文. 基于光栅局域温度控制的高精度多相移的产生和滤波器的制备[J]. 中国激光, 2021, 48(16): 1606001.

Hong Liang, Kang Ying, Di Wang, Jinjin Wei, Xuan Li, Haoyang Pi, Fang Wei, Haiwen Cai. High-Precision Multiphase Shifts Generation and Filter Fabrication Based on Grating Local Temperature Control[J]. Chinese Journal of Lasers, 2021, 48(16): 1606001.

参考文献

[1] Sáez-Rodríguez D, Cruz J L, Díez A, et al. All-fiber noninterferometric narrow-transmission-bandpass filter[J]. Optics Letters, 2012, 37(20): 4314-4316.

[2] Wang Y F, Zhang S N, Wang D Y, et al. Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth[J]. Optics Letters, 2012, 37(19): 4059-4061.

[3] Liu Z Y, Tam H Y, Htein L, et al. Microstructured optical fiber sensors[J]. Journal of Lightwave Technology, 2017, 35(16): 3425-3439.

[4] 张梓平, 牛晓晨, 黄杰, 等. 基于光纤环谐振腔的高性能微波光子滤波器[J]. 光学学报, 2020, 40(21): 2106001.

    Zhang Z P, Niu X C, Huang J, et al. High-performance microwave photonic filter based on fiber ring resonator[J]. Acta Optica Sinica, 2020, 40(21): 2106001.

[5] 游关红, 彭万敬, 邹辉. 基于光学滤波器的扫频光纤激光器研究进展[J]. 激光与光电子学进展, 2021, 58(1): 010006.

    You G H, Peng W J, Zou H. Research progress of frequency-swept fiber lasers based on optical filter[J]. Laser & Optoelectronics Progress, 2021, 58(1): 010006.

[6] Wei W, Yi L L, Jaouën Y, et al. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber[J]. Optics Express, 2014, 22(19): 23249-23260.

[7] Zou X, Li M, Pan W, et al. All-fiber optical filter with an ultranarrow and rectangular spectral response[J]. Optics Letters, 2013, 38(16): 3096-3098.

[8] 王迪, 应康, 李文屏, 等. 多相移光纤光栅滤波器的设计与制备[J]. 光学学报, 2020, 40(22): 2206002.

    Wang D, Ying K, Li W P, et al. Design and inscription of optical filters based on multi-phase-shifted fiber Bragg gratings[J]. Acta Optica Sinica, 2020, 40(22): 2206002.

[9] Wei L, Lit J W Y. Phase-shifted Bragg grating filters with symmetrical structures[J]. Journal of Lightwave Technology, 1997, 15(8): 1405-1410.

[10] Bakhti F, Sansonetti P. Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers[J]. Journal of Lightwave Technology, 1997, 15(8): 1433-1437.

[11] Kashyap R, Mckee P F, Armes D. UV written reflection grating structures in photosensitive optical fibres using phase-shifted phase masks[J]. Electronics Letters, 1994, 30(23): 1977-1978.

[12] Canning J, Sceats M G. Π-phase-shifted periodic distributed structures in optical fibres by UV post-processing[J]. Electronics Letters, 1994, 30(16): 1344-1345.

[13] Wu L Y, Pei L, Liu C, et al. Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism[J]. Optics & Laser Technology, 2016, 79: 15-19.

[14] Chen X X, Painchaud Y, Ogusu K, et al. Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating[J]. Journal of Lightwave Technology, 2010, 28(14): 2017-2022.

[15] Falah A A S, Mokhtar M R, Yusoff Z, et al. Reconfigurable phase-shifted fiber Bragg grating using localized micro-strain[J]. IEEE Photonics Technology Letters, 2016, 28(9): 951-954.

[16] Zhou X J, Shi S H, Zhang Z Y, et al. Mechanically-induced π-shifted long-period fiber gratings[J]. Optics Express, 2011, 19(7): 6253-6259.

[17] Li S Y, Ngo N Q, Tjin S C, et al. Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating[J]. Optics Letters, 2004, 29(1): 29-31.

[18] Ngo N Q, Liu D, Tjin S C, et al. Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating[J]. Optics Letters, 2005, 30(22): 2994-2996.

[19] Kondo Y, Nouchi K, Mitsuyu T, et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 1999, 24(10): 646-648.

[20] 王迪, 皮浩洋, 李璇, 等. 光纤布拉格光栅损耗特性的测量与分析[J]. 中国激光, 2018, 45(6): 0606004.

    Wang D, Pi H Y, Li X, et al. Measurement and analysis of loss in fiber Bragg gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0606004.

[21] 王迪, 李璇, 皮浩洋, 等. 相位掩模板干涉场及其对光纤光栅损耗的影响[J]. 光学学报, 2018, 38(8): 0806002.

    Wang D, Li X, Pi H Y, et al. Interference field behind phase mask and its influence on the loss characteristic in fiber Bragg gratings[J]. Acta Optica Sinica, 2018, 38(8): 0806002.

[22] Wang D, Ding M, Pi H Y, et al. Influence of intra-cavity loss on transmission characteristics of fiber Bragg grating Fabry-Perot cavity[J]. Chinese Physics B, 2018, 27(2): 024207.

梁虹, 应康, 王迪, 魏金金, 李璇, 皮浩洋, 魏芳, 蔡海文. 基于光栅局域温度控制的高精度多相移的产生和滤波器的制备[J]. 中国激光, 2021, 48(16): 1606001. Hong Liang, Kang Ying, Di Wang, Jinjin Wei, Xuan Li, Haoyang Pi, Fang Wei, Haiwen Cai. High-Precision Multiphase Shifts Generation and Filter Fabrication Based on Grating Local Temperature Control[J]. Chinese Journal of Lasers, 2021, 48(16): 1606001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!