Photonics Research, 2020, 8 (10): 10000B15, Published Online: Sep. 29, 2020  

Disorder-protected quantum state transmission through helical coupled-resonator waveguides Download: 579次

Author Affiliations
1 Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, South Korea
2 Basic Science Program, University of Science and Technology, Daejeon 34113, South Korea
3 ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Copy Citation Text

JungYun Han, Andrey A. Sukhorukov, Daniel Leykam. Disorder-protected quantum state transmission through helical coupled-resonator waveguides[J]. Photonics Research, 2020, 8(10): 10000B15.

References

[1] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 2008, 100: 013904.

[2] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 2014, 8: 821-829.

[3] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 2019, 91: 015006.

[4] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 2008, 100: 013905.

[5] Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 2009, 461: 772-775.

[6] D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar. Nonlinear topological photonics. Appl. Phys. Rev., 2020, 7: 021306.

[7] T. Ozawa, H. M. Price. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys., 2019, 1: 349-357.

[8] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, M. Segev. Topological insulator laser: theory. Science, 2018, 359: eaar4003.

[9] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan. Topological insulator laser: experiments. Science, 2018, 359: eaar4005.

[10] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, S. Iwamoto. Active topological photonics. Nanophotonics, 2020, 9: 547-567.

[11] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8: 031079.

[12] S. Mittal, E. A. Goldschmidt, M. Hafezi. A topological source of quantum light. Nature, 2018, 561: 502-506.

[13] J.-L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O. Zilberberg, R. Osellame, A. Peruzzo. Quantum interference of topological states of light. Sci. Adv., 2018, 4: eaat3187.

[14] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, M. Segev. Topological protection of biphoton states. Science, 2018, 362: 568-571.

[15] M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, A. Blanco-Redondo. Topologically protected entangled photonic states. Nanophotonics, 2019, 8: 1327-1335.

[16] C. Gneiting, F. Nori. Disorder-induced dephasing in backscattering-free quantum transport. Phys. Rev. Lett., 2017, 119: 176802.

[17] A. Streltsov, G. Adesso, M. B. Plenio. Colloquium: quantum coherence as a resource. Rev. Mod. Phys., 2017, 89: 041003.

[18] JoosE.ZehH. D.KieferC.GiuliniD. J.KupschJ.StamatescuI.-O., Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2013).

[19] C. M. Kropf, C. Gneiting, A. Buchleitner. Effective dynamics of disordered quantum systems. Phys. Rev. X, 2016, 6: 031023.

[20] M. C. Rechtsman, Y. Lumer, Y. Plotnik, A. Perez-Leija, A. Szameit, M. Segev. Topological protection of photonic path entanglement. Optica, 2016, 3: 925-930.

[21] S. Mittal, V. V. Orre, M. Hafezi. Topologically robust transport of entangled photons in a 2D photonic system. Opt. Express, 2016, 24: 15631-15641.

[22] C. Gneiting, D. Leykam, F. Nori. Disorder-robust entanglement transport. Phys. Rev. Lett., 2019, 122: 066601.

[23] L. Yuan, Q. Lin, A. Zhang, M. Xiao, X. Chen, S. Fan. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions. Phys. Rev. Lett., 2019, 122: 083903.

[24] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 2011, 7: 907-912.

[25] M. Hafezi, S. Mittal, J. Fan, A. Migdall, J. M. Taylor. Imaging topological edge states in silicon photonics. Nat. Photonics, 2013, 7: 1001-1005.

[26] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, M. Hafezi. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett., 2014, 113: 087403.

[27] S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, M. Hafezi. Measurement of topological invariants in a 2D photonic system. Nat. Photonics, 2016, 10: 180-183.

[28] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 2015, 114: 223901.

[29] Y. Plotnik, M. A. Bandres, S. Stützer, Y. Lumer, M. C. Rechtsman, A. Szameit, M. Segev. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering. Phys. Rev. B, 2016, 94: 020301.

[30] E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, M. Segev. Photonic topological insulator in synthetic dimensions. Nature, 2019, 567: 356-360.

[31] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett., 2012, 109: 106402.

[32] C. H. L. Quay, T. L. Hughes, J. A. Sulpizio, L. N. Pfeiffer, K. W. Baldwin, K. W. West, D. Goldhaber-Gordon, R. de Picciotto. Observation of a one-dimensional spin orbit gap in a quantum wire. Nat. Phys., 2010, 6: 336-339.

[33] J. Han, C. Gneiting, D. Leykam. Helical transport in coupled resonator waveguides. Phys. Rev. B, 2019, 99: 224201.

[34] HongC.YouZ.MandelL., “Nonclassical photon interference effects,” in Photons and Quantum Fluctuations (1988), Vol. 5, p. 51.

[35] A. Yariv, Y. Xu, R. K. Lee, A. Scherer. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett., 1999, 24: 711-713.

[36] D. Leykam, S. Mittal, M. Hafezi, Y. D. Chong. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett., 2018, 121: 023901.

[37] GottfriedK.YanT.-M., Quantum Mechanics: Fundamentals (Springer, 2003).

[38] A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, A. Melloni. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits. J. Opt., 2010, 12: 104008.

[39] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 1985, 31: 3761-3774.

[40] SchwablF., Advanced Quantum Mechanics (Springer, 1997).

[41] LoudonR., The Quantum Theory of Light (Oxford University, 2000).

[42] BrańczykA. M., “Hong-Ou-Mandel interference,” arXiv:1711.00080 (2017).

[43] J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, A. A. Sukhorukov. Scalable on-chip quantum state tomography. npj Quantum Inf., 2018, 4: 19.

[44] ZychM., “Quantum systems under gravitational time dilation,” Ph.D. thesis (University of Vienna, 2015).

[45] T. Legero, T. Wilk, A. Kuhn, G. Rempe. Time-resolved two-photon quantum interference. Appl. Phys. B, 2003, 77: 797-802.

[46] X. Y. Zou, L. J. Wang, L. Mandel. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett., 1991, 67: 318-321.

[47] WeihsG.ZeilingerA., “Photon statistics at beam-splitters: an essential tool in quantum information and teleportation,” in Coherence and Statistics of Photons and Atoms (Wiley, 2001), pp. 262288.

[48] H. Lee, P. Kok, J. P. Dowling. A quantum Rosetta stone for interferometry. J. Mod. Opt., 2002, 49: 2325-2338.

[49] S. Paesani, M. Borghi, S. Signorini, A. Maïnos, L. Pavesi, A. Laing. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun., 2020, 11: 2505.

[50] S. Slussarenko, M. M. Weston, H. M. Chrzanowski, L. K. Shalm, V. B. Verma, S. W. Nam, G. J. Pryde. Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photonics, 2017, 11: 700-703.

[51] NielsenM. A.ChuangI., Quantum Computation and Quantum Information (AAPT, 2002).

[52] S. Sadana, D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, U. Sinha. Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity. Phys. Rev. A, 2019, 100: 013839.

[53] De FariaE.De MeloW., Mathematical Aspects of Quantum Field Theory (Cambridge University, 2010), Vol. 127.

JungYun Han, Andrey A. Sukhorukov, Daniel Leykam. Disorder-protected quantum state transmission through helical coupled-resonator waveguides[J]. Photonics Research, 2020, 8(10): 10000B15.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!