光子学报, 2021, 50 (1): 45, 网络出版: 2021-03-12  

二维光催化材料的电子结构调控与应用研究进展(特邀) 下载: 1012次

Progress on Electronic Structure Control and Application of Two Dimensional Photocatalytic Materials (Invited)
作者单位
延安大学 化学与化工学院 延安市新能源新功能材料重点实验室,陕西省化学反应工程重点实验室,陕西延安716000
引用该论文

张文林, 许春花, 孙萌飞, 王羽龙, 李然, 张玉琦, 王记江. 二维光催化材料的电子结构调控与应用研究进展(特邀)[J]. 光子学报, 2021, 50(1): 45.

Wenlin ZHANG, Chunhua XU, Mengfei SUN, Yulong WANG, Ran LI, Yuqi ZHANG, Jijiang WANG. Progress on Electronic Structure Control and Application of Two Dimensional Photocatalytic Materials (Invited)[J]. ACTA PHOTONICA SINICA, 2021, 50(1): 45.

参考文献

[1] ZHU M, SUN Z, FUJITSUKA M. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light[J]. Angewandte Chemie, 2018, 57(8): 2160-2164.

[2] YU H, SHI R, ZHAO Y. Alkali‐assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible‐light‐driven hydrogen evolution[J]. Advanced Materials, 2017, 29(16): 1605148.

[3] TU W, XU Y, WANG J. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7260-7268.

[4] CHEN S, TAKATA T, DOMEN K. Particulate photocatalysts for overall water splitting[J]. Nature Reviews Materials, 2017, 2(10): 17050.

[5] CHE W, CHENG W, YAO T. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting[J]. Journal of the American Chemical Society, 2017, 139(8): 3021-3026.

[6] LEI F, ZHANG L, SUN Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting[J]. Angewandte Chemie, 2015, 54(32): 9266-9270.

[7] HAO C, LIAO Y, WU Y. RuO2-loaded TiO2-MXene as a high performance photocatalyst for nitrogen fixation[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109141.

[8] QIN J, HU X, LI X. 0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2[J]. Nano Energy, 2019, 61: 27-35.

[9] QIU P, XU C, ZHOU N. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221: 27-35.

[10] ZHAO Y, NING J, HU X. Adjustable electronic, optical and photocatalytic properties of black phosphorene by nonmetal doping[J]. Applied Surface Science, 2020, 505: 144488.

[11] LIU N, LU N, YU H. Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants[J]. Chemosphere, 2020, 246: 125760.

[12] XIONG J, DI J, LI H. Atomically thin 2D multinary nanosheets for energy-related photo, electrocatalysis[J]. Advanced Science, 2018, 5(7): 1800244.

[13] NIU P, ZHANG L, LIU G. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.

[14] ZHOU L, XIA T, CAO T. Morphology/phase-dependent MoS2 nanostructures for high-efficiency electrochemical activity[J]. Journal of Alloys and Compounds, 2020, 818: 152909.

[15] HUANG Y, FAN M, LI C. MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells[J]. Electrochimica Acta, 2016, 211: 794-803.

[16] IWASE A, ISHIGURO Y. Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light[J]. Journal of the American Chemical Society, 2011, 133(29): 11054-11057.

[17] YU J, JIN J, CHENG B. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel[J]. Journal of Materials Chemistry, 2014, 2(10): 3407-3416.

[18] LUO B, LIU G, WANG L J N. Recent advances in 2D materials for photocatalysis[J]. Nanoscale, 2016, 8(13): 6904-6920.

[19] LIAO G, FANG J, LI Q. Ag-Based nanocomposites: synthesis and applications in catalysis[J]. Nanoscale, 2019, 11(15): 7062-7096.

[20] NIU P, ZHANG L, LIU G. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Nano Energy, 2012, 22(22): 4763-4770.

[21] SHE X, WU J, ZHONG J. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency[J]. Nano Energy, 2016, 27: 138-146.

[22] SUN Y, CHENG H, GAO S. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting[J]. Angewandte Chemie, 2012, 51(35): 8727-8731.

[23] LEI F, SUN Y, LIU K. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting[J]. Journal of the American Chemical Society, 2014, 136(19): 6826-6829.

[24] SUN Y, SUN Z, GAO S. All‐surface‐atomic‐metal chalcogenide sheets for high‐efficiency visible‐light photoelectrochemical water splitting[J]. Advanced Energy Materials, 2014, 4(1): 1300611.

[25] XIONG T, CEN W, ZHANG Y. Bridging the g-C3N4 interlayers for enhanced photocatalysis[J]. ACS Catalysis, 2016, 6(4): 2462-2472.

[26] ZHANG N, LI X, YE H. Oxide defect engineering enables to couple solar energy into oxygen activation[J]. Journal of the American Chemical Society, 2016, 138(28): 8928-8935.

[27] GUAN M, XIAO C, ZHANG J. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28): 10411-10417.

[28] MOUDRAKOVSKI I L, BOTARI T. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites[J]. Nature Communications, 2016, 7(1): 12165-12165.

[29] NIU P, QIAO M, LI Y. Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution[J]. Nano Energy, 2018, 44: 73-81.

[30] MOUDRAKOVSKI I L, BOTARI T. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites[J]. Nature Communicatons, 2016, 7(1): 12165-12165.

[31] YU H, LI J, ZHANG Y. Three‐in‐one oxygen vacancies: whole visible‐spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction[J]. Angewandte Chemie, 2019, 58(12): 3880-3884.

[32] GAO S, GU B, JIAO X. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers[J]. Journal of the American Chemical Society, 2017, 139(9): 3438-3445.

[33] WU J, LI X, SHI W. Efficient visible‐light‐driven CO2 reduction mediated by defect‐engineered BiOBr atomic layers[J]. Angewandte Chemie International Edition, 2018, 57(28): 8719-8723.

[34] DI J, XIA J, CHISHOLM M F. Defect‐tailoring mediated electron-hole separation in single‐unit‐cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation[J]. Advanced Materials, 2019, 31(28): 1807576.

[35] LUO B, LIU G. D materials for photocatalysis[J]. Nanoscale, 2016, 8(13): 6904-6920.

[36] ZHANG S, GAO H, LIU X. Hybrid 0D-2D Nanoheterostructures: in situ growth of amorphous silver silicates dots on g-C3N4 nanosheets for full-spectrum photocatalysis[J]. ACS Applied Materials, 2016, 8(51): 35138-35149.

[37] LIU Q, CHEN T, GUO Y. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution[J]. Applied Catalysis B-environmental, 2016, 193: 248-258.

[38] WANG F, WU Y, WANG Y. Construction of novel Z-scheme nitrogen-doped carbon dots/{0 0 1} TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: Mechanism insight, products and effects of natural water matrices[J]. Chemical Engineering Journal, 2019, 356: 857-868.

[39] XIA P, CAO S, ZHU B. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie, 2020, 59(13): 5218-5225.

[40] SHI H, LONG S, HU S. Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction[J]. Applied Catalysis B-environmental, 2019, 245: 760-769.

[41] LIU Y, ZHANG H, KE J. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution[J]. Applied Catalysis B-environmental, 2018, 228: 64-74.

[42] YE M, ZHAO Z, HU Z. 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie, 2017, 56(29): 8407-8411.

[43] KONG L, JI Y, DANG Z. g‐C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light[J]. Advanced Functional Materials, 2018, 28(22): 1800668.

[44] FENG R, LEI W. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible-and NIR -light photoactivity[J]. Applied Catalysis B-environmental, 2018, 238: 444-453.

[45] YANG X, YANG Y, ZHANG S. Facile synthesis of porous nitrogen doped carbon dots (NCDs)@g-C3N4 for highly efficient photocatalytic and anti-counterfeiting applications[J]. Applied Surface Science, 2019, 490: 592-597.

[46] LIU S, KE J, SUN H. Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis[J]. Applied Catalysis B-environmental, 2017, 204: 358-364.

[47] ZHAO J, HOLMES M A, OSTERLOH F E. Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals[J]. ACS Nano, 2013, 7(5): 4316-4325.

[48] LI A, WANG T, LI C. Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to methanol[J]. Angewandte Chemie, 2019, 58(12): 3804-3808.

[49] XIA Y, TIAN Z, HEIL T. Highly selective CO2 capture and its direct photochemical conversion on ordered 2D/1D heterojunctions[J]. Joule, 2019, 3(11): 2792-2805.

[50] TIAN J, HAO P, WEI N. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance[J]. ACS Catalysis, 2015, 5(8): 4530-4536.

[51] FU J, XU Q. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B-environmental, 2019, 243: 556-565.

[52] WANG K, LI J, ZHANG G. Ag-Bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27686-27696.

[53] SHE H, ZHOU H, LI L. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 650-659.

[54] NURDIWIJAYANTO L, WU J, SAKAI N. Monolayer attachment of metallic MoS2 on restacked titania nanosheets for efficient photocatalytic hydrogen generation[J]. ACS Applied Energy Materials, 2018, 1(12): 6912-6918.

[55] WEN M, WANG J, TONG R. A low‐cost metal‐free photocatalyst based on black phosphorus[J]. Advanced Science, 2019, 6(1): 1801321.

[56] TONDA S, KUMAR S, BHARDWAJ M. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2667-2678.

[57] JI X, KANG Y, FAN T. An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction[J]. Journal of Materials Chemistry, 2020, 8(1): 323-333.

[58] SU T, HOOD Z D, NAGUIB M. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution[J]. Nanoscale, 2019, 11(17): 8138-8149.

[59] ZHANG Z, HUANG J, ZHANG M. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity[J]. Applied Catalysis B-environmental, 2015, 163: 298-305.

[60] SUN Z, YU Z, LIU Y. Construction of 2D/2D BiVO4/g-C3N4 nanosheet heterostructures with improved photocatalytic activity[J]. Journal of Colloid and Interface Science, 2019, 533: 251-258.

[61] LIN B, LI H, AN H. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution[J]. Applied Catalysis B-environmental, 2018, 220: 542-552.

[62] YU Y, YAN W, WANG X. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4[J]. Advanced Materials, 2018, 30(9): 1705060.

[63] DONG F, XIONG T, SUN Y. Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D-2D heterostructures[J]. Chemical Communications, 2015, 51(39): 8249-8252.

[64] JIANG R, LU G, YAN Z. Enhanced photocatalytic activity of a hydrogen bond-assisted 2D/2D Z-scheme SnNb2O6/Bi2WO6 system: Highly efficient separation of photoinduced carriers[J]. Journal of Colloid and Interface Science, 2019, 552: 678-688.

[65] ZHU X, HUANG S, YU Q. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion[J]. Applied Catalysis B-environmental, 2020, 269: 118760.

[66] CHU T, LIU D, TIAN Y. Cationic hexagonal boron nitride, graphene, and MoS2 nanosheets heteroassembled with their anionic counterparts for photocatalysis and sodium-ion battery applications[J]. ACS Applied Nano Materials, 2020, 3(6): 5327-5334.

[67] LIU C, XIONG M, CHAI B. Construction of 2D/2D Ni2P/CdS heterojunctions with significantly enhanced photocatalytic H2 evolution performance[J]. Catalysis Science & Technology, 2019, 9(24): 6929-6937.

[68] QIU P, XU C, ZHOU N. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with CP bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B-environmental, 2018, 221: 27-35.

[69] HAO C, LIAO Y, WU Y. RuO2-loaded TiO2-MXene as a high performance photocatalyst for nitrogen fixation[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109141.

张文林, 许春花, 孙萌飞, 王羽龙, 李然, 张玉琦, 王记江. 二维光催化材料的电子结构调控与应用研究进展(特邀)[J]. 光子学报, 2021, 50(1): 45. Wenlin ZHANG, Chunhua XU, Mengfei SUN, Yulong WANG, Ran LI, Yuqi ZHANG, Jijiang WANG. Progress on Electronic Structure Control and Application of Two Dimensional Photocatalytic Materials (Invited)[J]. ACTA PHOTONICA SINICA, 2021, 50(1): 45.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!