光学学报, 2018, 38 (7): 0727002, 网络出版: 2018-09-05   

弱控制场作用下腔内电磁诱导透明及其线宽研究 下载: 849次

Intracavity Electromagnetically Induced Transparency and Its Linewidth Under a Weak Control Field
作者单位
华东理工大学理学院, 上海 200237
引用该论文

吴嘉宝, 张示城, 胡依奇, 林功伟, 钮月萍, 龚尚庆. 弱控制场作用下腔内电磁诱导透明及其线宽研究[J]. 光学学报, 2018, 38(7): 0727002.

Jiabao Wu, Shicheng Zhang, Yiqi Hu, Gongwei Lin, Yueping Niu, Shangqing Gong. Intracavity Electromagnetically Induced Transparency and Its Linewidth Under a Weak Control Field[J]. Acta Optica Sinica, 2018, 38(7): 0727002.

参考文献

[1] Harris S E, Field J E. Imamo lu A. Nonlinear optical processes using electromagnetically induced transparency [J]. Physical Review Letters, 1990, 64(10): 1107-1110.

    Harris S E, Field J E. Imamo lu A. Nonlinear optical processes using electromagnetically induced transparency [J]. Physical Review Letters, 1990, 64(10): 1107-1110.

[2] Harris S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

    Harris S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

[3] Fleischhauer M. Imamo lu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media [J]. Reviews of Modern Physics, 2005, 77(2): 633-673.

    Fleischhauer M. Imamo lu A, Marangos J P. Electromagnetically induced transparency: Optics in coherent media [J]. Reviews of Modern Physics, 2005, 77(2): 633-673.

[4] 王叶兵, 丛东亮, 许朋, 等. 锶原子互组跃迁中原子相干光谱的实验观测[J]. 光学学报, 2013, 33(4): 0427001.

    王叶兵, 丛东亮, 许朋, 等. 锶原子互组跃迁中原子相干光谱的实验观测[J]. 光学学报, 2013, 33(4): 0427001.

    Wang Y B, Cong D L, Xu P, et al. Observation of atomic coherence in intercombination transition line of strontium atom[J]. Acta Optica Sinica, 2013, 33(4): 0427001.

    Wang Y B, Cong D L, Xu P, et al. Observation of atomic coherence in intercombination transition line of strontium atom[J]. Acta Optica Sinica, 2013, 33(4): 0427001.

[5] Boller K-J. Imamo lu A, Harris S E. Observation of electromagnetically induced transparency [J]. Physical Review Letters, 1991, 66(20): 2593-2596.

    Boller K-J. Imamo lu A, Harris S E. Observation of electromagnetically induced transparency [J]. Physical Review Letters, 1991, 66(20): 2593-2596.

[6] Hakuta K, Marmet L, Stoicheff B P. Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen[J]. Physical Review Letters, 1991, 66(5): 596-599.

    Hakuta K, Marmet L, Stoicheff B P. Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen[J]. Physical Review Letters, 1991, 66(5): 596-599.

[7] Zhang G Z, Hakuta K, Stoicheff B P. Nonlinear optical generation using electromagnetically induced transparency in atomic hydrogen[J]. Physical Review Letters, 1993, 71(19): 3099-3102.

    Zhang G Z, Hakuta K, Stoicheff B P. Nonlinear optical generation using electromagnetically induced transparency in atomic hydrogen[J]. Physical Review Letters, 1993, 71(19): 3099-3102.

[8] 刘羽桐, 钮月萍, 林功伟, 等. 原子相干引起的五阶非线性增强[J]. 光学学报, 2017, 37(7): 0719002.

    刘羽桐, 钮月萍, 林功伟, 等. 原子相干引起的五阶非线性增强[J]. 光学学报, 2017, 37(7): 0719002.

    Liu Y T, Niu Y P, Lin G W, et al. Enhancement of fifth-order nonlinearity induced by atomic coherence[J]. Acta Optica Sinica, 2017, 37(7): 0719002.

    Liu Y T, Niu Y P, Lin G W, et al. Enhancement of fifth-order nonlinearity induced by atomic coherence[J]. Acta Optica Sinica, 2017, 37(7): 0719002.

[9] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

    Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

[10] Lukin M D. Imamo lu A. Nonlinear optics and quantum entanglement of ultra-slow single photons [J]. Physical Review Letters, 2000, 84(7): 1419-1422.

    Lukin M D. Imamo lu A. Nonlinear optics and quantum entanglement of ultra-slow single photons [J]. Physical Review Letters, 2000, 84(7): 1419-1422.

[11] Yang X H, Zhou Y Y, Xiao M. Entangler via electromagnetically induced transparency with an atomic ensemble[J]. Scientific Reports, 2013, 3(3): 3479.

    Yang X H, Zhou Y Y, Xiao M. Entangler via electromagnetically induced transparency with an atomic ensemble[J]. Scientific Reports, 2013, 3(3): 3479.

[12] Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.

    Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.

[13] Zhu S G, Zhang Y, Chen X Z, et al. Storage of an optical packet in the EIT medium[J]. Acta Optica Sinica, 2003, 23(s1): 769-770.

    Zhu S G, Zhang Y, Chen X Z, et al. Storage of an optical packet in the EIT medium[J]. Acta Optica Sinica, 2003, 23(s1): 769-770.

[14] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.

    Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.

[15] Mücke M, Figueroa E, Bochmann J, et al. Electromagnetically induced transparency with single atoms in a cavity[J]. Nature, 2010, 465(7299): 755-758.

    Mücke M, Figueroa E, Bochmann J, et al. Electromagnetically induced transparency with single atoms in a cavity[J]. Nature, 2010, 465(7299): 755-758.

[16] Tanji-Suzuki H, Chen W L, Landig R, et al. Vacuum-induced transparency[J]. Science, 2011, 333(6047): 1266-1269.

    Tanji-Suzuki H, Chen W L, Landig R, et al. Vacuum-induced transparency[J]. Science, 2011, 333(6047): 1266-1269.

[17] Ritter S, Nölleke C, Hahn C, et al. An elementary quantum network of single atoms in optical cavities[J]. Nature, 2012, 484(7393): 195-200.

    Ritter S, Nölleke C, Hahn C, et al. An elementary quantum network of single atoms in optical cavities[J]. Nature, 2012, 484(7393): 195-200.

[18] Kampschulte T, Alt W, Manz S, et al. Electromagnetically-induced-transparency control of single-atom motion in an optical cavity[J]. Physical Review A, 2014, 89(3): 033404.

    Kampschulte T, Alt W, Manz S, et al. Electromagnetically-induced-transparency control of single-atom motion in an optical cavity[J]. Physical Review A, 2014, 89(3): 033404.

[19] Lukin M D, Fleischhauer M, Scully M O, et al. Intracavity electromagnetically induced transparency[J]. Optics Letters, 1998, 23(4): 295-297.

    Lukin M D, Fleischhauer M, Scully M O, et al. Intracavity electromagnetically induced transparency[J]. Optics Letters, 1998, 23(4): 295-297.

[20] Wang H, Goorskey D J, Burkett W H, et al. Cavity-linewidth narrowing by means of electromagnetically induced transparency[J]. Optics Letters, 2000, 25(23): 1732-1734.

    Wang H, Goorskey D J, Burkett W H, et al. Cavity-linewidth narrowing by means of electromagnetically induced transparency[J]. Optics Letters, 2000, 25(23): 1732-1734.

[21] Hernandez G, Zhang J P, Zhu Y F. Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system[J]. Physical Review A, 2007, 76(5): 053814.

    Hernandez G, Zhang J P, Zhu Y F. Vacuum Rabi splitting and intracavity dark state in a cavity-atoms system[J]. Physical Review A, 2007, 76(5): 053814.

[22] Wu H B, Xiao M. White-light cavity with competing linear and nonlinear dispersions[J]. Physical Review A, 2008, 77(3): 031801.

    Wu H B, Xiao M. White-light cavity with competing linear and nonlinear dispersions[J]. Physical Review A, 2008, 77(3): 031801.

[23] Ying K, Niu Y P, Chen D J, et al. White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system[J]. Optics Communications, 2015, 342: 189-192.

    Ying K, Niu Y P, Chen D J, et al. White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system[J]. Optics Communications, 2015, 342: 189-192.

[24] Zhang J P, Hernandez G, Zhu Y F. Slow light with cavity electromagnetically induced transparency[J]. Optics Letters, 2008, 33(1): 46-48.

    Zhang J P, Hernandez G, Zhu Y F. Slow light with cavity electromagnetically induced transparency[J]. Optics Letters, 2008, 33(1): 46-48.

[25] Wei X G, Zhang J P, Zhu Y F. All-optical switching in a coupled cavity-atom system[J]. Physical Review A, 2010, 82(3): 033808.

    Wei X G, Zhang J P, Zhu Y F. All-optical switching in a coupled cavity-atom system[J]. Physical Review A, 2010, 82(3): 033808.

[26] Zou B C, Tan Z, Musa M, et al. Interaction-free all-optical switching at low light intensities in a multi-atom cavity-QED system[J]. Physical Review A, 2014, 89(2): 023806.

    Zou B C, Tan Z, Musa M, et al. Interaction-free all-optical switching at low light intensities in a multi-atom cavity-QED system[J]. Physical Review A, 2014, 89(2): 023806.

[27] 吉慕尧, 段亚凡, 钮月萍, 等. 基于V型电磁诱导透明效应的腔衰荡光谱研究[J]. 光学学报, 2016, 36(11): 1127001.

    吉慕尧, 段亚凡, 钮月萍, 等. 基于V型电磁诱导透明效应的腔衰荡光谱研究[J]. 光学学报, 2016, 36(11): 1127001.

    Ji M Y, Duan Y F, Niu Y P, et al. Cavity ringdown spectroscopy based on V-type electromagnetically induced transparency[J]. Acta Optica Sinica, 2016, 36(11): 1127001.

    Ji M Y, Duan Y F, Niu Y P, et al. Cavity ringdown spectroscopy based on V-type electromagnetically induced transparency[J]. Acta Optica Sinica, 2016, 36(11): 1127001.

[28] Peng Y D, Jin L L, Niu Y P, et al. Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances[J]. Journal of Modern Optics, 2010, 57(8): 641-645.

    Peng Y D, Jin L L, Niu Y P, et al. Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances[J]. Journal of Modern Optics, 2010, 57(8): 641-645.

[29] Ying K, Niu Y P, Chen D J, et al. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system[J]. Journal of the Optical Society of America B, 2014, 31(1): 144-148.

    Ying K, Niu Y P, Chen D J, et al. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system[J]. Journal of the Optical Society of America B, 2014, 31(1): 144-148.

[30] Ying K, Niu Y P, Chen D J, et al. Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature[J]. Journal of Modern Optics, 2014, 61(4): 322-327.

    Ying K, Niu Y P, Chen D J, et al. Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature[J]. Journal of Modern Optics, 2014, 61(4): 322-327.

[31] Chen H N, Ying K, Duan Y F, et al. Cavity linewidth narrowing by means of electromagnetically induced transparency in Rb with a longitudinal magnetic field[J]. Chinese Optics Letters, 2014, 12(9): 092701.

    Chen H N, Ying K, Duan Y F, et al. Cavity linewidth narrowing by means of electromagnetically induced transparency in Rb with a longitudinal magnetic field[J]. Chinese Optics Letters, 2014, 12(9): 092701.

[32] Tian S C, Wan R G, Shan X N, et al. Controllable cavity linewidth narrowing via spontaneously generated coherence in a four level atomic system[J]. Optics Communications, 2015, 356: 155-160.

    Tian S C, Wan R G, Shan X N, et al. Controllable cavity linewidth narrowing via spontaneously generated coherence in a four level atomic system[J]. Optics Communications, 2015, 356: 155-160.

[33] Lin G W, Yang J, Niu Y P, et al. Cavity linewidth narrowing with dark-state polaritons[J]. Chinese Physics B, 2016, 25(1): 014201.

    Lin G W, Yang J, Niu Y P, et al. Cavity linewidth narrowing with dark-state polaritons[J]. Chinese Physics B, 2016, 25(1): 014201.

[34] Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097.

    Fleischhauer M, Lukin M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097.

[35] Dong C H, Fiore V, Kuzyk M C, et al. Optomechanical dark mode[J]. Science, 2012, 338(6114): 1609-1613.

    Dong C H, Fiore V, Kuzyk M C, et al. Optomechanical dark mode[J]. Science, 2012, 338(6114): 1609-1613.

吴嘉宝, 张示城, 胡依奇, 林功伟, 钮月萍, 龚尚庆. 弱控制场作用下腔内电磁诱导透明及其线宽研究[J]. 光学学报, 2018, 38(7): 0727002. Jiabao Wu, Shicheng Zhang, Yiqi Hu, Gongwei Lin, Yueping Niu, Shangqing Gong. Intracavity Electromagnetically Induced Transparency and Its Linewidth Under a Weak Control Field[J]. Acta Optica Sinica, 2018, 38(7): 0727002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!