光学学报, 2018, 38 (1): 0123002, 网络出版: 2018-08-31   

基于LiF和NaF的超宽带红外吸收器 下载: 902次

Ultra-Broadband Infrared Absorber Based on LiF and NaF
作者单位
1 山西大学物理电子工程学院, 山西 太原 030006
2 山西大学量子光学与光量子器件国家重点实验室激光光谱研究所, 山西 太原 030006
引用该论文

陈曦, 薛文瑞, 赵晨, 李昌勇. 基于LiF和NaF的超宽带红外吸收器[J]. 光学学报, 2018, 38(1): 0123002.

Xi Chen, Wenrui Xue, Chen Zhao, Changyong Li. Ultra-Broadband Infrared Absorber Based on LiF and NaF[J]. Acta Optica Sinica, 2018, 38(1): 0123002.

参考文献

[1] Cui Y X, He Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

    Cui Y X, He Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

    Cui Y X, He Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

[2] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20): 207402.

    Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20): 207402.

    Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett, 2008, 100(20): 207402.

[3] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[4] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213.

    Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213.

    Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213.

[5] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

    Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

    Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.

[6] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704.

    Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704.

    Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas[J]. Science, 2011, 332(6030): 702-704.

[7] Zhu B, Huang C, Feng Y. Dual band switchable metamaterial electromagnetic absorber[J]. Progress in Electromagnetics Research B, 2010, 24: 121-129.

    Zhu B, Huang C, Feng Y. Dual band switchable metamaterial electromagnetic absorber[J]. Progress in Electromagnetics Research B, 2010, 24: 121-129.

    Zhu B, Huang C, Feng Y. Dual band switchable metamaterial electromagnetic absorber[J]. Progress in Electromagnetics Research B, 2010, 24: 121-129.

[8] 保石, 罗春荣, 张燕萍, 等. 基于树枝结构单元的超材料宽带微波吸收器[J]. 物理学报, 2010, 59(5): 3187-3191.

    保石, 罗春荣, 张燕萍, 等. 基于树枝结构单元的超材料宽带微波吸收器[J]. 物理学报, 2010, 59(5): 3187-3191.

    保石, 罗春荣, 张燕萍, 等. 基于树枝结构单元的超材料宽带微波吸收器[J]. 物理学报, 2010, 59(5): 3187-3191.

    Bao S, Luo C R, Zhang Y P, et al. Broadband metamaterial absorber based on dendritic structure[J]. Acta Physica Sinica, 2010, 59(5): 3187-3191.

    Bao S, Luo C R, Zhang Y P, et al. Broadband metamaterial absorber based on dendritic structure[J]. Acta Physica Sinica, 2010, 59(5): 3187-3191.

    Bao S, Luo C R, Zhang Y P, et al. Broadband metamaterial absorber based on dendritic structure[J]. Acta Physica Sinica, 2010, 59(5): 3187-3191.

[9] Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506.

    Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506.

    Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506.

[10] Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz region[J]. Journal of the Optical Society of America B, 2010, 27(3): 498-504.

    Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz region[J]. Journal of the Optical Society of America B, 2010, 27(3): 498-504.

    Ye Y Q, Jin Y, He S L. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz region[J]. Journal of the Optical Society of America B, 2010, 27(3): 498-504.

[11] Landy N I, Bingham C M, Tyler T. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12): 125104.

    Landy N I, Bingham C M, Tyler T. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12): 125104.

    Landy N I, Bingham C M, Tyler T. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review B, 2009, 79(12): 125104.

[12] Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111.

    Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111.

    Wen Q Y, Zhang H W, Xie Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111.

[13] Zhu J F, Ma Z F, Sun W J, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters, 2014, 105(2): 021102.

    Zhu J F, Ma Z F, Sun W J, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters, 2014, 105(2): 021102.

    Zhu J F, Ma Z F, Sun W J, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters, 2014, 105(2): 021102.

[14] Cui Y X, Xu J, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101.

    Cui Y X, Xu J, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101.

    Cui Y X, Xu J, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101.

[15] Xue W R, Chen X, Peng Y L, et al. Grating-type mid-infrared light absorber based on silicon carbide material[J]. Optics Express, 2016, 24(20): 22596-22605.

    Xue W R, Chen X, Peng Y L, et al. Grating-type mid-infrared light absorber based on silicon carbide material[J]. Optics Express, 2016, 24(20): 22596-22605.

    Xue W R, Chen X, Peng Y L, et al. Grating-type mid-infrared light absorber based on silicon carbide material[J]. Optics Express, 2016, 24(20): 22596-22605.

[16] Zhu W R, Zhao X P. Metamaterial absorber with dendritic cells at infrared frequencies[J]. Journal of the Optical Society of America B, 2009, 26(12): 2382-2385.

    Zhu W R, Zhao X P. Metamaterial absorber with dendritic cells at infrared frequencies[J]. Journal of the Optical Society of America B, 2009, 26(12): 2382-2385.

    Zhu W R, Zhao X P. Metamaterial absorber with dendritic cells at infrared frequencies[J]. Journal of the Optical Society of America B, 2009, 26(12): 2382-2385.

[17] 赵阳, 何建芳, 杨荣草, 等. 结构渐变的二维表面等离子体光栅光吸收器[J]. 光学学报, 2014, 34(2): 0223005.

    赵阳, 何建芳, 杨荣草, 等. 结构渐变的二维表面等离子体光栅光吸收器[J]. 光学学报, 2014, 34(2): 0223005.

    赵阳, 何建芳, 杨荣草, 等. 结构渐变的二维表面等离子体光栅光吸收器[J]. 光学学报, 2014, 34(2): 0223005.

    Zhao Y, He J F, Yang R C, et al. Two-dimensional surface plasmonic grating optical absorber with gradually varying structure[J]. Acta Optica Sinica, 2014, 34(2): 0223005.

    Zhao Y, He J F, Yang R C, et al. Two-dimensional surface plasmonic grating optical absorber with gradually varying structure[J]. Acta Optica Sinica, 2014, 34(2): 0223005.

    Zhao Y, He J F, Yang R C, et al. Two-dimensional surface plasmonic grating optical absorber with gradually varying structure[J]. Acta Optica Sinica, 2014, 34(2): 0223005.

[18] Hedayati M K, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials[J]. Advanced Materials, 2011, 23(45): 5410-5414.

    Hedayati M K, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials[J]. Advanced Materials, 2011, 23(45): 5410-5414.

    Hedayati M K, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials[J]. Advanced Materials, 2011, 23(45): 5410-5414.

[19] Peng H, Luo Y, Ying X X, et al. Broadband and highly absorbing multilayer structure in mid-infrared[J]. Applied Optics, 2016, 55(31): 8833-8838.

    Peng H, Luo Y, Ying X X, et al. Broadband and highly absorbing multilayer structure in mid-infrared[J]. Applied Optics, 2016, 55(31): 8833-8838.

    Peng H, Luo Y, Ying X X, et al. Broadband and highly absorbing multilayer structure in mid-infrared[J]. Applied Optics, 2016, 55(31): 8833-8838.

[20] Yue WS, Wang ZH, YangY, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016( 10): 1557- 1563.

    Yue WS, Wang ZH, YangY, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016( 10): 1557- 1563.

    Yue WS, Wang ZH, YangY, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016( 10): 1557- 1563.

[21] Xiao D, Tao K Y, Wang Q. Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array[J]. Plasmonics, 2016, 11(2): 389-394.

    Xiao D, Tao K Y, Wang Q. Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array[J]. Plasmonics, 2016, 11(2): 389-394.

    Xiao D, Tao K Y, Wang Q. Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array[J]. Plasmonics, 2016, 11(2): 389-394.

[22] Korobkin D, Urzhumov Y, Shvets G. Enhanced near-field resolution in midinfrared using metamaterials[J]. Journal of the Optical Society of America B, 2005, 23(3): 468-478.

    Korobkin D, Urzhumov Y, Shvets G. Enhanced near-field resolution in midinfrared using metamaterials[J]. Journal of the Optical Society of America B, 2005, 23(3): 468-478.

    Korobkin D, Urzhumov Y, Shvets G. Enhanced near-field resolution in midinfrared using metamaterials[J]. Journal of the Optical Society of America B, 2005, 23(3): 468-478.

[23] Palik ED. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1985: 675-693, 1021- 1034.

    Palik ED. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1985: 675-693, 1021- 1034.

    Palik ED. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1985: 675-693, 1021- 1034.

[24] Wang L P, Zhang X M. Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays[J]. Journal of the Optical Society of America B, 2010, 27(12): 2595-2604.

    Wang L P, Zhang X M. Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays[J]. Journal of the Optical Society of America B, 2010, 27(12): 2595-2604.

    Wang L P, Zhang X M. Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays[J]. Journal of the Optical Society of America B, 2010, 27(12): 2595-2604.

陈曦, 薛文瑞, 赵晨, 李昌勇. 基于LiF和NaF的超宽带红外吸收器[J]. 光学学报, 2018, 38(1): 0123002. Xi Chen, Wenrui Xue, Chen Zhao, Changyong Li. Ultra-Broadband Infrared Absorber Based on LiF and NaF[J]. Acta Optica Sinica, 2018, 38(1): 0123002.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!