红外与激光工程, 2020, 49 (12): 20201076, 网络出版: 2021-01-14   

高功率金刚石激光技术研究进展(特邀) 下载: 666次

Research progress of high-power diamond laser technology (Invited)
作者单位
1 河北工业大学 先进激光技术研究中心,天津 300401;河北省先进激光技术与装备重点实验室,天津 300401;麦考瑞大学 光子学研究中心,悉尼 2109
2 河北工业大学 先进激光技术研究中心,天津 300401;河北省先进激光技术与装备重点实验室,天津 300401
3 光电信息控制和安全技术重点实验室,天津 300308
引用该论文

白振旭, 杨学宗, 陈晖, 金舵, 丁洁, 齐瑶瑶, 李森森, 闫秀生, 王雨雷, 吕志伟. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201076.

Zhenxu Bai, Xuezong Yang, Hui Chen, Duo Jin, Jie Ding, Yaoyao Qi, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Research progress of high-power diamond laser technology (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201076.

参考文献

[1] Steinmetz T, Wilken T, Araujo-Hauck C. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

[2] Su Jiaxin, Tong Cunzhu, Wang Lijie. Beam waist shrinkage of high-power broad-area diode lasers by mode tailoring[J]. Optics Express, 2020, 28(9): 13131-13140.

[3] Bai Z, Yuan H, Liu Z. Stimulated Brillouin scattering materials, experimental design and applications: A review[J]. Optical Materials, 2018, 75: 626-645.

[4] C̆erný Pavel, Helena Jelı́nková, Peter G Zverev. Solid state lasers with Raman frequency conversion[J]. Progress in Quantum Electronics, 2004, 28(2): 113-143.

[5] 白振旭, Bai Zhenxu, 王雨雷, Wang Yulei, 吕志伟, Lv Zhiwei. Research progress of serial laser beam combination based on stimulated Brillouin amplification[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110004.

[6] 何建国, He Jianguo, Li Ming, 李明, 貊泽强, Mo Zeqiang. Study on longitudinal forced convection heat transfer for high power slab media[J]. Infrared and Laser Engineering, 2020, 49(9): 20200556.

[7] Weber R, Neuenschwander B, Weber H P. Thermal effects in solid-state laser materials[J]. Optical Materials, 1999, 11(2-3): 245-254.

[8] Chénais S, Druon F, Forget S. On thermal effects in solid state lasers: The case of ytterbium-doped materials[J]. Progress in Quantum Electronics, 2006, 30(4): 89-153.

[9] Söderlund M J, Ponsoda J J M, Koplow J P. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling[J]. Optics Express, 2009, 17(12): 9940-9946.

[10] Shen D Y, Sahu J K, Clarkson W A. Highly efficient in-band pumped Er: YAG laser with 60 W of output at 1645 nm[J]. Optics Letters, 2006, 31(6): 754-756.

[11] Ichikawa Hiromasa, Yamaguchi Kohki, Katsumata Tomo. High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding[J]. Optics Express, 2017, 25(19): 22797-22804.

[12] 王辉华, Wang Huihua, 林龙信, Lin Longxin, 叶辛, Ye Xin. Progress and tendency of high power slab lasers[J]. Infrared and Laser Engineering, 2020, 49(7): 20190456.

[13] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature photonics, 2013, 7(11): 861-867.

[14] 王菲, Wang Fei. High stability 488 nm light generated by intra-cavity frequency doubling in optically pumped semiconductor disc lasers[J]. Infrared and Laser Engineering, 2019, 48(6): 0606004.

[15] Ripin D J, Ochoa J R, Aggarwal R L. 165-W cryogenically cooled Yb: YAG laser[J]. Optics Letters, 2004, 29(18): 2154-2156.

[16] Feve J P M, Shortoff K E, Bohn M J. High average power diamond Raman laser[J]. Optics Express, 2011, 19(2): 913-922.

[17] Cheung E C, Ho J G, Goodno G D. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356.

[18] Zhou Pu, Liu Zejin, Wang Xiaolin. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE Journal of Selected Topics In Quantum Electronics, 2009, 15(2): 248-256.

[19] Cui C, Wang Y, Lu Z. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification[J]. Optics Express, 2018, 26(25): 32717-32727.

[20] https:www.e6.comenproductsoptics.

[21] http:www.diamondmaterials.com.

[22] 王仕发, Wang Shifa, 李丹明, Li Danming, 肖玉华, Xiao Yuhua. Diamond radiation detector used for space radiation detection: a state-of-art review[J]. Materials Reports A, 2018, 32(5): 1459-1468.

[23] Bassett W A. Diamond anvil cell, 50th birthday[J]. High Pressure Research, 2009, 29(2): 163-186.

[24] Mildren R P, Rabeau J R. Optical Engineering of Diamond (MILDREN: DIAMOND OPTICS OBK) || Intrinsic Optical Properties of Diamond[M]. Germany, Wiley‐VCH Verlag GmbH & Co. KGaA, 2013.

[25] 白振旭. 高功率金刚石拉曼激光器亮度增强技术及金刚石布里渊激光器研究[D]. 哈尔滨工业大学, 2018.

[26] Williams R J, Kitzler O, Bai Z. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1602214.

[27] Bai Z, Williams R J, Kitzler O. Diamond Brillouin laser in the visible[J]. APL Photonics, 2020, 5(3): 031301.

[28] Mckay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser[J]. Laser & Photonics Review, 2014, 8(3): L37-L41.

[29] Tennant Smithson. On the nature of the diamond[J]. Philosophical Transactions of the Royal Society of London. 1979, 87: 123–127.

[30] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond f novel laser applications[C]In Optics Photonics f Counterterrism Crime Fighting VI Optical Materials in Defence Systems Technology, 2010, 7838: 783819.

[31] Martineau P M, Gaukroger M P, Guy K B. High crystalline quality single crystal chemical vapour deposition diamond[J]. Journal of Physics: Condensed Matter, 2009, 21(36): 364205.

[32] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser[J]. Optics Express, 2011, 19(11): 10857-10863.

[33] Mildren R P, Butler J E, Rabeau J R. CVD-diamond external cavity Raman laser at 573 nm[J]. Optics Express, 2008, 16(23): 18950-18955.

[34] Mildren R P, Sabella A. Highly efficient diamond Raman laser[J]. Optics Letters, 2009, 34(18): 2811-2813.

[35] Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 2010, 35(23): 3874-3876.

[36] Sabella A, Piper J A, Mildren R P. Efficient conversion of a 1.064 μm Nd: YAG laser to the eye-safe region using a diamond Raman laser[J]. Optics Express, 2011, 19(23): 23554-23560.

[37] Jelínek M, Kitzler O, Jelínková H. CVD‐diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd: YAP laser[J]. Laser Physics Letters, 2012, 9(1): 35-38.

[38] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm[J]. Optics Letters, 2014, 39(13): 4037-4040.

[39] Antipov S, Sabella A, Williams R J. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 2019, 44(10): 2506-2509.

[40] Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser[J]. Optics Letters, 2010, 35(4): 556-558.

[41] Murtagh M, Lin J, Mildren R P. Efficient diamond Raman laser generating 65 fs pulses[J]. Optics Express, 2015, 23(12): 15504-15513.

[42] Murtagh M, Lin J, Mildren R P. Ti: sapphire-pumped diamond Raman laser with sub-100-fs pulse duration[J]. Optics Letters, 2014, 39(10): 2975-2978.

[43] Lux O, Sarang S, Kitzler O. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 2016, 3(8): 876-881.

[44] Yang X, Kitzler O, Spence D J. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain[J]. Optics Letters, 2019, 44(4): 839-842.

[45] Yang X, Kitzler O, Spence D J. Diamond sodium guide star laser[J]. Optics Letters, 2020, 45(7): 1898-1901.

[46] Sarang S, Kitzler O, Lux O. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain[J]. OSA Continuum, 2019, 2(4): 1028-1038.

[47] Kitzler O, Lin J, Helen M P. Single-longitudinal-mode ring diamond Raman laser[J]. Optics Letters, 2017, 42(7): 1229-1232.

[48] Latawiec P, Venkataraman V, Burek M J. On-chip diamond Raman laser[J]. Optica, 2015, 2(11): 924-928.

[49] Reilly S, Savitski V G, Liu H. Monolithic diamond Raman laser[J]. Optics Letters, 2015, 40(6): 930-933.

[50] McKay A, Spence D J, Coutts D W. Diamond‐based concept for combining beams at very high average powers[J]. Laser & Photonics Reviews, 2017, 11(3): 1600130.

[51] Williams R J, Bai Z, Sarang S. Diamond Brillouin lasers[J]. arXiv preprint, 2018, arXiv: 1807.00240.

[52] Bai Z, Williams R J, Kitzler O, et al. Observation of stimulated Brillouin scattering Brillouin frequency comb generation in diamond[C]CLEO: QELS_Fundamental Science, 2018, FF3E7.

[53] Kamo M, Matsumoto S, Sato Y, et al. Nobuo SetakaMethod f synthesizing diamond[P]. US4434188A.

[54] Bundy F P, Hall H T, Strong H M. Man-made diamonds[J]. Nature, 1955, 176(4471): 51-55.

[55] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

[56] Ng W K, Woodbury E J. Ruby laser operation in near IR[C]Proceedings of the Institute of Radio Engineers, 1962, 50: 2367.

[57] Eckhardt G, Hellwarth R W, McClung F J. Stimulated Raman scattering from organic liquids[J]. Physical Review Letters, 1962, 9(11): 455-457.

[58] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves[J]. Physical Review Letters, 1964, 12(21): 592-595.

[59] Grimsditch M H, Ramdas A K. Brillouin scattering in diamond[J]. Physical Review B, 1975, 11(8): 3139-3148.

[60] Kaminskii A A, Ralchenko V G E, Konov V I. Observation of stimulated Raman scattering in CVD-diamond[J]. Journal of Experimental and Theoretical Physics Letters, 2004, 80(4): 267-270.

[61] Parrotta D C, Kemp A J, Dawson M D. Tunable continuous-wave diamond Raman laser[J]. Optics Express, 2011, 19(24): 24165-24170.

[62] Sergei Antipov, Robert J. Williams, Alexander Sabella. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 2020, 28(10): 15232-15239.

[63] Li M, Kitzler O, Spence D J. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser[J]. Optics Express, 2020, 28(2): 1738-1744.

[64] Ditchburn R W. Diamond as an optical material for space optics[J]. Optica Acta: International Journal of Optics, 1982, 29(4): 355-359.

[65] Klein C A. Diamond windows for IR applications in adverse environments[J]. Diamond and Related Materials, 1993, 2(5-7): 1024-1032.

[66] 王伟华, Wang Weihua, 代冰, Dai Bing, 王杨, Wang Yang. Recent progress of diamond optical window-related components[J]. Materials Science and Technology, 2020, 28(3): 42-57.

[67] Goss J P, Briddon P R, Rayson M J. Vacancy-impurity complexes and limitations for implantation doping of diamond[J]. Physical Review B, 2005, 72(3): 035214.

[68] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond f novel laser applications[C]Optics Photonics f Counterterrism Crime Fighting VI Optical Materials in Defence Systems Technology VII, 2010, 7838: 783819.

[69] Piper J A, Pask H M. Crystalline raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

[70] 白振旭, 陈晖, 李宇琪, 等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程, 出版中.Bai Zhenxu, Chen Hui, Li Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared Laser Engineering, in press (in Chinese).

[71] Williams R J, Kitzler O, Mckay A. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping[J]. Optics Letters, 2014, 39(14): 4152-4155.

[72] Williams R J, Spence D J, Lux O. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond[J]. Optics Express, 2017, 25(2): 749-757.

[73] Heinzig M, Walbaum T, Williams R J, et al. Highpower singlepass pumped diamond Raman laser[C]Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference (CLEOEuropeEQEC), 2017, CA_11_5.

[74] Kitzler O, Mckay A, Mildren R P. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser[J]. Optics Letters, 2012, 37(14): 2790-2792.

[75] Savitski V G, Friel I, Hastie J E. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 328-337.

[76] Williams R J, Nold J, Strecker M. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 2015, 9(4): 405-411.

[77] Lux O, Sarang S, Williams R J. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection[J]. Optics Express, 2016, 24(24): 27812-27820.

[78] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 1997, 22(6): 375-377.

[79] Lai W, Ma P, Liu W. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 2020, 28(14): 20908-20919.

[80] Bai Z, Williams R J, Jasbeer H. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 2018, 43(3): 563-566.

[81] Bai Z, Williams R. J., Kitzler Ondrej. 302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement[J]. Optics Express, 2018, 26(16): 19797-19803.

[82] Bai Z, Zhao C, Qi Y, et al. Towards longwave infrared lasing by diamond Raman conversion[C]Conference on Lasers ElectroopticsPacific Rim, 2020, 12.

白振旭, 杨学宗, 陈晖, 金舵, 丁洁, 齐瑶瑶, 李森森, 闫秀生, 王雨雷, 吕志伟. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201076. Zhenxu Bai, Xuezong Yang, Hui Chen, Duo Jin, Jie Ding, Yaoyao Qi, Sensen Li, Xiusheng Yan, Yulei Wang, Zhiwei Lv. Research progress of high-power diamond laser technology (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201076.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!