中国激光, 2018, 45 (10): 1001008, 网络出版: 2018-10-12   

基于声光频移器反馈控制的397.5 nm紫外激光功率稳定研究 下载: 918次

397.5 nm Ultra-Violet Laser Power Stabilization Based on Feedback Control via Acousto-Optic Frequency Shifter
白乐乐 1,2温馨 1,2杨煜林 1,2刘金玉 1,2何军 1,2,3王军民 1,2,3,*
作者单位
1 山西大学量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学光电研究所, 山西 太原 030006
3 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

白乐乐, 温馨, 杨煜林, 刘金玉, 何军, 王军民. 基于声光频移器反馈控制的397.5 nm紫外激光功率稳定研究[J]. 中国激光, 2018, 45(10): 1001008.

Bai Lele, Wen Xin, Yang Yulin, Liu Jinyu, He Jun, Wang Junmin. 397.5 nm Ultra-Violet Laser Power Stabilization Based on Feedback Control via Acousto-Optic Frequency Shifter[J]. Chinese Journal of Lasers, 2018, 45(10): 1001008.

参考文献

[1] Kim D I, Rhee H G, Song J B, et al. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator[J]. Review of Scientific Instruments, 2007, 78(10): 103110.

[2] 苗少峰, 李晨旭, 高苗, 等. 面向光学器件透反射率测量的声光调制型激光功率稳定系统设计[J]. 中国光学, 2016, 9(2): 263-269.

    Miao S F, Li C X, Gao M, et al. Design of laser power stabilization system based on acousto-optic modulation for the transmissivity and reflectivity measurement of optical devices[J]. Chinese Journal of Lasers, 2016, 9(2): 263-269.

[3] Yun P, Tricot F, Calosso C E, et al. High-performance coherent population trapping clock with polarization modulation[J]. Physical Review Applied, 2017, 7(1): 014018.

[4] 王秀梅, 孟艳玲, 李琳, 等. 积分球冷原子钟的探测光频率和强度噪声[J]. 中国激光, 2017, 44(9): 0912001.

    Wang X M, Meng Y L, Li L, et al. Frequency and intensity noises of probe laser in integrating sphere cold atom clock[J]. Chinese Journal of Lasers, 2017, 44(9): 0912001.

[5] Linke N M, Ballance C J, Lucas D M. Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+[J]. Optics Letters, 2013, 38(23): 5087-5089.

[6] 温馨, 韩亚帅, 刘金玉, 等. 低分析频率压缩光的实验制备[J]. 物理学报, 2018, 67(2): 024207.

    Wen X, Han Y S, Liu J N, et al. Generation of squeezed states at low analysis frequencies[J]. Acta Physica Sinica, 2018, 67(2): 024207.

[7] Wen X, Han Y S, Bai J D, et al. Cavity-enhanced frequency doubling from 795 nm to 3975 nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime[J]. Optics Express, 2014, 22(26): 32293.

[8] Yang W H, Jin X L, Yu X D, et al. Dependence of measured audio-band squeezing level on local oscillator intensity noise[J]. Optics Express, 2017, 25(20): 24262-24271.

[9] Wen X, Han Y S, Liu J N, et al. Polarization squeezing at the audio frequency band for the Rubidium D1 line[J]. Optics Express, 2017, 25(17): 20737-20748.

[10] Farinas A D, Gustafson E K, Byer R L. Frequency and intensity noise in an injection-locked, solid-state laser[J]. Journal of the Optical Society of America B, 1995, 12(2): 328-334.

[11] Harb C C, Ralph T C, Huntington E H. et al. Intensity-noise properties of injection-locked lasers[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1996, 54(5): 4370-4382.

[12] Harb C C, Gray M B, Bachor H A, et al. Suppression of the intensity noise in a diode-pumped Nd: YAG nonplanar ring laser[J]. IEEE Journal of Quantum Electronics, 1994, 30(12): 2907-2913.

[13] 陈艳丽, 张靖, 李永民, 等. 利用模清洁器降低单频Nd∶YVO 4激光器的强度噪声[J]. 中国激光, 2001, 28(3): 197-200.

    Chen Y L, Zhang J, Li Y M, et al. Reduction of intensity noise of single-frequency Nd∶YVO 4 laser using mode cleaner[J]. Chinese Journal of Lasers, 2001, 28(3): 197-200.

[14] Kuhr S, Alt W, Schrader D, et al. Deterministic delivery of a single atom[J]. Science, 2001, 293(5528): 278-280.

[15] Li G, Zhang S, Isenhower L, et al. Crossed vortex bottle beam trap for single-atom qubits[J]. Optics Letters, 2012, 37(5): 851-853.

[16] 靳刚, 靳刚, 温馨, 温馨, 杨保东, 杨保东, 等. 采用声光频移器反馈控制实现激光强度稳定[J]. 中国光学, 2014, 7(2): 234-239.

    , 等. 采用声光频移器反馈控制实现激光强度稳定[J]. 中国光学, 2014, 7(2): 234-239.

    , et al. Laser intensity stabilization by using of opto-electronic feedback control based on an acousto-optical frequency-shifting system[J]. Chinese Journal of Optics, 2014, 7(2): 234-239.

    Jin G, Jin G, Wen X, Wen X, Yang B D, Yang B D, et al. Laser intensity stabilization by using of opto-electronic feedback control based on an acousto-optical frequency-shifting system[J]. Chinese Optics, 2014, 7(2): 234-239.

[17] Du J J, Li W F, Li G, et al. Intensity noise suppression of light field by optoelectronic feedback[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(18): 3443-3445.

[18] 赵儒臣, 付小虎, 孙剑芳, 等. 高效率外腔倍频产生大功率507.4 nm连续激光[J]. 中国激光, 2017, 44(7): 0701001.

    Zhao R C, Fu X H, Sun J F, et al. High power 507.4 nm continuous laser generated by high efficient external cavity frequency doubling[J]. Chinese Journal of Lasers, 2017, 44(7): 0701001.

白乐乐, 温馨, 杨煜林, 刘金玉, 何军, 王军民. 基于声光频移器反馈控制的397.5 nm紫外激光功率稳定研究[J]. 中国激光, 2018, 45(10): 1001008. Bai Lele, Wen Xin, Yang Yulin, Liu Jinyu, He Jun, Wang Junmin. 397.5 nm Ultra-Violet Laser Power Stabilization Based on Feedback Control via Acousto-Optic Frequency Shifter[J]. Chinese Journal of Lasers, 2018, 45(10): 1001008.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!