光学学报, 2017, 37 (10): 1016001, 网络出版: 2018-09-07   

柔性双阻带太赫兹超材料滤波器 下载: 984次

Flexible Dual-Stopband Terahertz Metamaterial Filter
作者单位
1 中北大学仪器与电子学院仪器科学与动态测试教育部重点实验室, 山西 太原 030051
2 鄂尔多斯应用技术学院信息工程系, 内蒙古 鄂尔多斯 017000
引用该论文

王俊林, 张斌珍, 段俊萍, 王鑫. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报, 2017, 37(10): 1016001.

Junlin Wang, Binzhen Zhang, Junping Duan, Xin Wang. Flexible Dual-Stopband Terahertz Metamaterial Filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001.

参考文献

[1] 刘盛纲, 钟任斌. 太赫兹科学技术及其应用的新发展[J]. 电子科技大学学报, 2009, 38(5): 481-486.

    刘盛纲, 钟任斌. 太赫兹科学技术及其应用的新发展[J]. 电子科技大学学报, 2009, 38(5): 481-486.

    Liu Shenggang, Zhong Renbin. Recent development of terahertz science and technology and it's applications[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(5): 481-486.

    Liu Shenggang, Zhong Renbin. Recent development of terahertz science and technology and it's applications[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(5): 481-486.

[2] ShurM . Terahertz technology: devices and applications [C]. Solid-State Device Research Conference , 2005 : 13 - 21 .

    ShurM . Terahertz technology: devices and applications [C]. Solid-State Device Research Conference , 2005 : 13 - 21 .

[3] Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D, 2006, 39(17): R301-R310.

    Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D, 2006, 39(17): R301-R310.

[4] LangeA . Cosmic background and space science at THz frequencies[C]. 33rdInternational Conference on Infrared, Millimeter and Terahertz Waves, Pasadena , 2008 : 10384168 .

    LangeA . Cosmic background and space science at THz frequencies[C]. 33rdInternational Conference on Infrared, Millimeter and Terahertz Waves, Pasadena , 2008 : 10384168 .

[5] Fitzgerald A J, Wallace V P, Jimenezlinan M, et al. Terahertz pulsed imaging of human breast tumors[J]. Radiology, 2006, 239(2): 533-540.

    Fitzgerald A J, Wallace V P, Jimenezlinan M, et al. Terahertz pulsed imaging of human breast tumors[J]. Radiology, 2006, 239(2): 533-540.

[6] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

[7] Ramm A G. Does negative refraction make a perfect lens?[J]. Physics Letters A, 2008, 372(43): 6518-6520.

    Ramm A G. Does negative refraction make a perfect lens?[J]. Physics Letters A, 2008, 372(43): 6518-6520.

[8] Seddon N, Bearpark T. Observation of the inverse Doppler effect[J]. Science, 2003, 302(5650): 1537-1539.

    Seddon N, Bearpark T. Observation of the inverse Doppler effect[J]. Science, 2003, 302(5650): 1537-1539.

[9] Aydin K, Bulu I, Ozbay E. Subwavelength resolution with a negative-index metamaterial superlens[J]. Applied Physics Letters, 2007, 90(25): 254102.

    Aydin K, Bulu I, Ozbay E. Subwavelength resolution with a negative-index metamaterial superlens[J]. Applied Physics Letters, 2007, 90(25): 254102.

[10] Wang J L, Zhang B Z, Wang X, et al. Flexible dual-band band-stop metamaterials filter for the terahertz region[J]. Optical Materials Express, 2017, 7(5): 1656-1665.

    Wang J L, Zhang B Z, Wang X, et al. Flexible dual-band band-stop metamaterials filter for the terahertz region[J]. Optical Materials Express, 2017, 7(5): 1656-1665.

[11] 邢维, 延凤平, 谭思宇, 等. 高品质因数太赫兹超材料设计的仿真分析[J]. 中国激光, 2016, 43(1): 0106005.

    邢维, 延凤平, 谭思宇, 等. 高品质因数太赫兹超材料设计的仿真分析[J]. 中国激光, 2016, 43(1): 0106005.

    Xing Wei, Yan Fengping, Tan Siyu, et al. Simulation analysis on the designing of high- Q terahertz metamaterials[J]. Chinese J Lasers, 2016, 43(1): 0106005.

    Xing Wei, Yan Fengping, Tan Siyu, et al. Simulation analysis on the designing of high- Q terahertz metamaterials[J]. Chinese J Lasers, 2016, 43(1): 0106005.

[12] Peng L, Chen P W, Wu A T, et al. Efficient radiation by electrically small antennas made of coupled split-ring resonators[J]. Scientific Reports, 2016, 6: 33501.

    Peng L, Chen P W, Wu A T, et al. Efficient radiation by electrically small antennas made of coupled split-ring resonators[J]. Scientific Reports, 2016, 6: 33501.

[13] Wang X, Zhang B Z, Wang W J, et al. Design and characterization of an ultrabroad band metamaterial microwave absorber[J]. IEEE Photonics Journal, 2017, 9(3): 1-13.

    Wang X, Zhang B Z, Wang W J, et al. Design and characterization of an ultrabroad band metamaterial microwave absorber[J]. IEEE Photonics Journal, 2017, 9(3): 1-13.

[14] 张建娜, 张波, 沈京玲. 太赫兹超材料的吸收调制方法[J]. 激光与光电子学进展, 2016, 53(11): 110002.

    张建娜, 张波, 沈京玲. 太赫兹超材料的吸收调制方法[J]. 激光与光电子学进展, 2016, 53(11): 110002.

    Zhang Jianna, Zhang Bo, Shen Jingling. Absorption modulation method of terahertz metamaterial[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110002.

    Zhang Jianna, Zhang Bo, Shen Jingling. Absorption modulation method of terahertz metamaterial[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110002.

[15] Lee J W, Seo M A, Kang D H, et al. Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets[J]. Physical Review Letters, 2007, 99(13): 137401.

    Lee J W, Seo M A, Kang D H, et al. Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets[J]. Physical Review Letters, 2007, 99(13): 137401.

[16] Dickie R, Cahill R, Fusco V, et al. THz frequency selective surface filters for earth observation remote sensing instruments[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 450-461.

    Dickie R, Cahill R, Fusco V, et al. THz frequency selective surface filters for earth observation remote sensing instruments[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 450-461.

[17] Wang L, Geng Z X, He X J, et al. Realization of band-pass and low-pass filters on a single chip in terahertz regime[J]. Optoelectronics Letters, 2015, 11(1): 33-35.

    Wang L, Geng Z X, He X J, et al. Realization of band-pass and low-pass filters on a single chip in terahertz regime[J]. Optoelectronics Letters, 2015, 11(1): 33-35.

[18] Li Z Y, Ding Y J. Terahertz broadband-stop filters[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705.

    Li Z Y, Ding Y J. Terahertz broadband-stop filters[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705.

[19] Zhang X Q, Gu J Q, Cao W, et al. Bilayer-fish-scale ultrabroad terahertz bandpass filter[J]. Optics Letters, 2012, 37(5): 906-908.

    Zhang X Q, Gu J Q, Cao W, et al. Bilayer-fish-scale ultrabroad terahertz bandpass filter[J]. Optics Letters, 2012, 37(5): 906-908.

[20] Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25): 253104.

    Chen S Q, Cheng H, Yang H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25): 253104.

[21] Ahn J H, Je J H. Stretchable electronics: materials, architectures and integrations[J]. Journal of Physics D, 2012, 45(10): 103001.

    Ahn J H, Je J H. Stretchable electronics: materials, architectures and integrations[J]. Journal of Physics D, 2012, 45(10): 103001.

[22] Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors[J]. Semiconductor Science and Technology, 2015, 30(6): 064001.

    Ahn B D, Jeon H J, Sheng J, et al. A review on the recent developments of solution processes for oxide thin film transistors[J]. Semiconductor Science and Technology, 2015, 30(6): 064001.

[23] 冯雪, 陆炳卫, 吴坚, 等. 可延展柔性无机微纳电子器件原理与研究进展[J]. 物理学报, 2014, 63(1): 014201.

    冯雪, 陆炳卫, 吴坚, 等. 可延展柔性无机微纳电子器件原理与研究进展[J]. 物理学报, 2014, 63(1): 014201.

    Feng Xue, Lu Bingwei, Wu Jian, et al. Review on stretchable and flexible inorganic electronics[J]. Acta Physica Sinica, 2014, 63(1): 014201.

    Feng Xue, Lu Bingwei, Wu Jian, et al. Review on stretchable and flexible inorganic electronics[J]. Acta Physica Sinica, 2014, 63(1): 014201.

[24] 刘旭, 吕延军, 王龙飞, 等. 可延展柔性电子技术研究进展[J]. 半导体技术, 2015, 40(3): 161-166.

    刘旭, 吕延军, 王龙飞, 等. 可延展柔性电子技术研究进展[J]. 半导体技术, 2015, 40(3): 161-166.

    Liu Xu, Lü Yanjun, Wang Longfei, et al. Research progress of stretchable and flexible electronic technology[J]. Semiconductor Technology, 2015, 40(3): 161-166.

    Liu Xu, Lü Yanjun, Wang Longfei, et al. Research progress of stretchable and flexible electronic technology[J]. Semiconductor Technology, 2015, 40(3): 161-166.

王俊林, 张斌珍, 段俊萍, 王鑫. 柔性双阻带太赫兹超材料滤波器[J]. 光学学报, 2017, 37(10): 1016001. Junlin Wang, Binzhen Zhang, Junping Duan, Xin Wang. Flexible Dual-Stopband Terahertz Metamaterial Filter[J]. Acta Optica Sinica, 2017, 37(10): 1016001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!