Matter and Radiation at Extremes, 2018, 3 (6): 293, Published Online: Mar. 14, 2019  

Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions

Author Affiliations
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, 201800 Shanghai, China
2 College of Science, Xi'an Jiaotong University, Xi'an 710049, China
3 Helmholtz Institute Jena, D-07743 Jena, Germany
4 Theoretisch-Physikalisches Institut, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
5 Key Laboratory of HEDP of the Ministry of Education, CAPT, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
Copy Citation Text

D. Wu, W. Yu, Y.T. Zhao, S. Fritzsche, X.T. He. Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions[J]. Matter and Radiation at Extremes, 2018, 3(6): 293.

References

[1] C. Wang, X.-T. He, P. Zhang, Ab initio simulations of dense helium plasmas, Phys. Rev. Lett. 106 (2011), 145002.

[2] M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.

[3] T.Z. Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, et al., Proposed double-layer target for the generation of high-quality laseraccelerated ion beams, Phys. Rev. Lett. 89 (2002), 175003.

[4] Boris Yu. Sharkov, Dieter H.H. Hoffmann, Alexander A. Golubev, Yongtao Zhao, High energy density physics with intense ion beams, Matter Radiat. Extr. 1 (2016) 28.

[5] J. Magill, H. Schwoerer, F. Ewald, J. Galy, R. Schenkel, et al., Laser transmutation of iodine-129, Appl. Phys. B 77 (2003) 387.

[6] E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering, Energy Convers. Manage. 77 (2014) 558.

[7] O.J. Pike, F. Mackenroth, E.G. Hill, S.J. Rose, A photonCphoton collider in a vacuum hohlraum, Nat. Photon. 8 (2014) 434.

[8] B.S. Paradkar, M.S. Wei, T. Yabuuchi, R.B. Stephens, M.G. Haines, et al., Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities, Phys. Rev. E 83 (2011), 046401.

[9] B.S. Paradkar, S.I. Krasheninnikov, F.N. Beg, Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction, Phys. Plasmas 19 (2012), 060703.

[10] S.I. Krasheninnikov, Stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well, Phys. Plasmas 21 (2014), 104510.

[11] D. Wu, S.I. Krasheninnikov, S.X. Luan, W. Yu, Identifying the source of super-high energetic electrons in the presence of pre-plasma in lasermatter interaction at relativistic intensities, Nucl. Fusion 57 (2017), 016007.

[12] D. Wu, S.I. Krasheninnikov, S.X. Luan, W. Yu, The controllable superhigh energetic electrons by external magnetic fields at relativistic lasersolid interactions in the presence of large scale pre-plasmas, Phys. Plasmas 23 (2016), 123116.

[13] D. Wu, S.X. Luan, J.W. Wang, W. Yu, J.X. Gong, et al., The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas, Plasma Phys. Control. Fusion 59 (2017), 065004.

[14] S.M. Weng, Z.M. Sheng, M. Murakami, M. Chen, M. Liu, et al., Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition, Matter Radiat. Extr. 3 (2018) 28.

[15] D. Wu, X.T. He, W. Yu, S. Fritzsche, Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations, Phys. Rev. E 95 (2017), 023208.

[16] D. Wu, B. Qiao, C. McGuffey, X.T. He, F.N. Beg, Generation of highenergy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses, Phys. Plasmas 21 (2014), 123118.

[17] D. Wu, X.T. He, W. Yu, S. Fritzsche, Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations, Phys. Rev. E 95 (2017), 023207.

[18] K. Nanbu, S. Yonemura, Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle, J. Comput. Phys. 145 (1998) 639.

[19] Y. Sentoku, A.J. Kemp, Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents, J. Comput. Phys. 227 (2008) 6846.

[20] P. Leblanc, Y. Sentoku, Scaling of resistive guiding of laser-driven fastelectron currents in solid targets, Phys. Rev. E 89 (2014), 023109.

[21] Y. Sentoku, E. dHumieres, L. Romagnani, P. Audebert, J. Fuchs, Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields, Phys. Rev. Lett. 107 (2011), 135005.

[22] L.G. Huang, T. Kluge, T.E. Cowan, Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses, Phys. Plasmas 23 (2016), 063112.

[23] F. Zamponi, A. Lubcke, T. Kampfer, I. Uschmann, E. Forster, et al., Directional bremsstrahlung from a Ti laser-produced X-ray source at relativistic intensities in the 3C12 keV range, Phys. Rev. Lett. 105 (2010), 085001.

[24] Igor V. Sokolov, Natalia M. Naumova, John A. Nees, Gerard A. Mourou, Victor P. Yanovsky, Radiation back-reaction in relativistically strong and QED-strong pulsed laser fields, Phys. Plasmas 16 (2009), 093115.

[25] D. Wu, B. Qiao, X.T. He, The radiation reaction effects in the ultraintense and ultra-short laser foil interaction regime, Phys. Plasmas 22 (2015), 093108.

[26] F. Wan, C. Lv, M. Jia, H. Sang, B.S. Xie, Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser and plasmas, Eur. Phys. J. D 71 (2017) 236.

[27] J.D. Jackson, Classical Electrodynamics, Wiley & Sons, New York, 1999.

[28] Zheng Gong, Ronghao Hu, Yinren Shou, Bin Qiao, Chiaer Chen, et al., Radiation reaction induced spiral attractors in ultra-intense colliding laser beams, Matter Radiat. Extr. 1 (2016) 308.

[29] H. Xu, W.W. Chang, H.B. Zhuo, L.H. Cao, Z.W. Yue, Parallel programming of 2(1/2)-dimensional PIC under distributed-memory parallel environments, Chin. J. Comput. Phys. 19 (2002) 305.

[30] Qing Jia, Hong-bo Cai, Wei-wu Wang, Shao-ping Zhu, Z.M. Sheng, et al., Effects of the background plasma temperature on the current filamentation instability, Phys. Plasmas 20 (2013), 032113.

[31] S.V. Bulanov, T. Zh. Esirkepov, M. Kando, F. Pegoraro, S. Bulanov, et al., Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability, Phys. Plasmas 19 (2012), 103105.

[32] D. Wu, C.Y. Zheng, C.T. Zhou, X.Q. Yan, M.Y. Yu, et al., Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime, Phys. Plasmas 20 (2013), 023102.

[33] D. Wu, C.Y. Zheng, B. Qiao, C.T. Zhou, X.Q. Yan, et al., Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses, Phys. Rev. E 90 (2014), 023101.

[34] Z.M. Sheng, Y. Sentoku, K. Mima, J. Zhang, W. Yu, et al., Angular distributions of fast electrons, ions, and bremsstrahlung X/γ-rays in intense laser interaction with solid targets, Phys. Rev. Lett. 85 (2000) 5340.

D. Wu, W. Yu, Y.T. Zhao, S. Fritzsche, X.T. He. Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions[J]. Matter and Radiation at Extremes, 2018, 3(6): 293.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!