光学学报, 2020, 40 (1): 0111005, 网络出版: 2020-01-06   

散射成像技术的研究进展 下载: 6574次特邀综述

Research Progress on Scattering Imaging Technology
作者单位
西安电子科技大学物理与光电工程学院, 陕西 西安 710071
引用该论文

朱磊, 邵晓鹏. 散射成像技术的研究进展[J]. 光学学报, 2020, 40(1): 0111005.

Lei Zhu, Xiaopeng Shao. Research Progress on Scattering Imaging Technology[J]. Acta Optica Sinica, 2020, 40(1): 0111005.

参考文献

[1] 姜文汉. 自适应光学技术[J]. 自然杂志, 2006, 28(1): 7-13.

    Jiang W H. Adaptive optical technology[J]. Chinese Journal of Nature, 2006, 28(1): 7-13.

[2] 钟炜, 张晓晖, 管风, 等. 基于高重复频率脉冲激光的水下全选通成像雷达[J]. 中国激光, 2016, 43(11): 1101009.

    Zhong W, Zhang X H, Guan F, et al. Underwater full range-gated imaging radar based on high-repetition-rate pulse laser[J]. Chinese Journal of Lasers, 2016, 43(11): 1101009.

[3] 黄子恒, 李微, 杨克成, 等. 水下激光距离选通三维成像方法[J]. 激光与红外, 2016, 46(11): 1315-1319.

    Huang Z H, Li W, Yang K C, et al. Underwater laser range-gated 3-D imaging method[J]. Laser & Infrared, 2016, 46(11): 1315-1319.

[4] Huang D, Swanson E, Lin C, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[5] Webb R H. Confocal optical microscopy[J]. Reports on Progress in Physics, 1996, 59(3): 427-471.

[6] Denk W, Strickler J, Webb W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

[7] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.

[8] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 2006, 24(7): 848-851.

[9] Wang L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nature Photonics, 2009, 3(9): 503-509.

[10] Ale A, Ermolayev V, Herzog E, et al. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 2012, 9(6): 615-620.

[11] Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers[J]. Nature Protocols, 2011, 6(8): 1121-1129.

[12] Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 2010, 7(8): 603-614.

[13] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2(2): 110-115.

[14] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16): 2309-2311.

[15] Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5): 320-322.

[16] Conkey D B, Brown A N. Caravaca-Aguirre A M, et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 2012, 20(5): 4840-4849.

[17] Blochet B, Bourdieu L, Gigan S. Fast wavefront optimization for focusing through biological tissue (conference presentation)[J]. Proceedings of SPIE, 2017, 10073: 100730T.

[18] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.

[19] Popoff M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach[J]. New Journal of Physics, 2011, 13(12): 123021.

[20] 杨虹, 黄远辉, 龚昌妹, 等. 散射介质超衍射极限技术研究进展[J]. 中国光学, 2014, 7(1): 1-25.

    Yang H, Huang Y H, Gong C M, et al. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25.

[21] Freund I, Rosenbluh M, Feng S C. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.

[22] Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

[23] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8(10): 784-790.

[24] Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 2017, 4(10): 1209-1213.

[25] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.

[26] Derode A, Roux P, Fink M. Robust acoustic time reversal with high-order multiple scattering[J]. Physical Review Letters, 1995, 75(23): 4206-4209.

[27] Draeger C, Fink M. One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity[J]. Physical Review Letters, 1997, 79(3): 407-410.

[28] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56(4): 523.

[29] Fink M, Prada C. Acoustic time-reversal mirrors[J]. Inverse problems, 2001, 17(1): R1-R38.

[30] Fisher RA. Optical phase conjugation[M]. New York: Academic Press, 2012: 45- 70.

[31] Voronin É S, Ivakhnik V V, Petnikova V M, et al. Compensation for phase distortions by three-frequency parametric interaction[J]. Soviet Journal of Quantum Electronics, 1979, 9(6): 765-768.

[32] Bloom D M, Bjorklund G C. Conjugate wave-front generation and image reconstruction by four-wave mixing[J]. Applied Physics Letters, 1977, 31(9): 592-594.

[33] Yariv A, Pepper D M. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing[J]. Optics Letters, 1977, 1(1): 16-18.

[34] Králiková B, Skála J, Straka P, et al. Image restoration in a highly non-steady-state regime of stimulated Brillouin scattering in a photodissociation iodine laser[J]. Optics Letters, 1997, 22(11): 766-768.

[35] Karaguleff C, Clark G L. Optical aberration correction by real-time holography in liquid crystals[J]. Optics Letters, 1990, 15(14): 820-822.

[36] Paurisse M, Hanna M, Druon F, et al. Phase and amplitude control of a multimode LMA fiber beam by use of digital holography[J]. Optics Express, 2009, 17(15): 13000-13008.

[37] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4): 3444-3455.

[38] Lhermite J, Suran E, Kermene V, et al. Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light modulator[J]. Optics Express, 2010, 18(5): 4783-4789.

[39] van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19): 193905.

[40] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6): 870-872.

[41] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6(8): 549-553.

[42] Park J H, Yu Z, Lee K R, et al. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 2018, 3(10): 100901.

[43] Lemoult F. Lerosey G, de Rosny J, et al. Manipulating spatiotemporal degrees of freedom of waves in random media[J]. Physical Review Letters, 2009, 103(17): 173902.

[44] Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 2007, 315(5815): 1120-1122.

[45] Kogelnik H, Pennington K S. Holographic imaging through a random medium[J]. Journal of the Optical Society of America, 1968, 58(2): 273-274.

[46] ShengP. Introduction to wave scattering, localization, and mesoscopic phenomena[M]. New York: Academic Press, 1995: 18- 35.

[47] Choi Y, Yang T D, Fang-Yen C, et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 2011, 107(2): 023902.

[48] Drémeau A, Liutkus A, Martina D, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 2015, 23(9): 11898-11911.

[49] Yoon J, Lee K, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8): 10158-10167.

[50] Tripathi S, Paxman R, Bifano T, et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 2012, 20(14): 16067-16076.

[51] Andreoli D, Volpe G, Popoff S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix[J]. Scientific Reports, 2015, 5: 10347.

[52] Mounaix M, Andreoli D, Defienne H, et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix[J]. Physical Review Letters, 2016, 116(25): 253901.

[53] DongJ, KrzakalaF, GiganS. Spectral method for multiplexed phase retrieval and application in optical imaging in complex media[C]∥ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 12-17, 2019, Brighton, United Kingdom. New York: IEEE, 2019: 4963- 4967.

[54] Park H, Crozier K B. Multispectral imaging with vertical silicon nanowires[J]. Scientific Reports, 2013, 3: 2460.

[55] Stewart J W, Akselrod G M, Smith D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 2017, 29(6): 1602971.

[56] Holekamp T F, Turaga D, Holy T E. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy[J]. Neuron, 2008, 57(5): 661-672.

[57] Pégard N C, Liu H Y, Antipa N, et al. Compressive light-field microscopy for 3D neural activity recording[J]. Optica, 2016, 3(5): 517-524.

[58] AkkermansE, MontambauxG. Mesoscopic physics of electrons and photons[M]. UK: Cambridge University Press, 2007: 35- 45.

[59] Goodman JW. Speckle phenomena in optics: theory and applications[M]. USA: Roberts and Company Publishers, 2007: 15- 70.

[60] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.

[61] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

[62] Wu T F, Katz O, Shao X P, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41(21): 5003-5006.

[63] Lohmann A W, Weigelt G, Wirnitzer B. Speckle masking in astronomy: triple correlation theory and applications[J]. Applied Optics, 1983, 22(24): 4028-4037.

[64] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1): 71-74.

[65] Singh A K, Naik D N, Pedrini G, et al. Looking through a diffuser and around an opaque surface: a holographic approach[J]. Optics Express, 2014, 22(7): 7694-7701.

[66] Yang W Q, Li G W, Guohai S T. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8: 9614.

[67] Wang X Y, Jin X, Li J Q, et al. Prior-information-free single-shot scattering imaging beyond the memory effect[J]. Optics Letters, 2019, 44(6): 1423-1426.

[68] Jin X, Wang Z P, Wang X Y, et al. Depth of field extended scattering imaging by light field estimation[J]. Optics Letters, 2018, 43(20): 4871-4874.

[69] Liao M H, Lu D J, Pedrini G, et al. Extending the depth-of-field of imaging systems with a scattering diffuser[J]. Scientific Reports, 2019, 9: 7165.

[70] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

[71] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60: 259-268.

[72] Brady D J, Choi K, Marks D L, et al. Compressive holography[J]. Optics Express, 2009, 17(15): 13040-13049.

[73] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 2018, 8: 1134.

[74] Shi Y Y, Liu Y W, Wang J M, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 2017, 110(23): 231101.

[75] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 2016, 6: 33558.

[76] Richardson W H. Bayesian-based iterative method of image restoration[J]. Journal of the Optical Society of America, 1972, 62(1): 55-59.

[77] Lucy L B. An iterative technique for the rectification of observed distributions[J]. The Astronomical Journal, 1974, 79(6): 745-754.

[78] Wu T F, Dong J, Shao X P, et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity[J]. Optics Express, 2017, 25(22): 27182-27194.

[79] Antipa N, Kuo G, Heckel R, et al. DiffuserCam: lensless single-exposure 3D imaging[J]. Optica, 2018, 5(1): 1-9.

[80] Liao M H, He W Q, Lu D J, et al. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium[J]. Scientific Reports, 2017, 7: 41789.

[81] Li G W, Yang W Q, Li D Y, et al. Cyphertext-only attack on the double random-phase encryption: experimental demonstration[J]. Optics Express, 2017, 25(8): 8690-8697.

[82] Wu P F, Liang Z, Zhao X, et al. Lensless wide-field single-shot imaging through turbid media based on object-modulated speckles[J]. Applied Optics, 2017, 56(12): 3335-3341.

[83] Takasaki K T, Fleischer J W. Phase-space measurement for depth-resolved memory-effect imaging[J]. Optics Express, 2014, 22(25): 31426-31433.

[84] Li G, Yang W, Wang H, et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 2019, 9(5): 849.

[85] Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3D objects[J]. Light: Science & Applications, 2017, 6(2): e16219.

[86] Lee K, Park Y. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 2016, 7: 13359.

[87] Yilmaz H, van Putten E G, Bertolotti J, et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging[J]. Optica, 2015, 2(5): 424-429.

朱磊, 邵晓鹏. 散射成像技术的研究进展[J]. 光学学报, 2020, 40(1): 0111005. Lei Zhu, Xiaopeng Shao. Research Progress on Scattering Imaging Technology[J]. Acta Optica Sinica, 2020, 40(1): 0111005.

本文已被 17 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!