Photonics Research, 2016, 4 (5): 05000168, Published Online: Nov. 23, 2016  

Experimental performance evaluation of quadrature amplitude modulation signal transmission in a silicon microring Download: 1108次

Author Affiliations
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
Copy Citation Text

Chengcheng Gui, Jian Wang. Experimental performance evaluation of quadrature amplitude modulation signal transmission in a silicon microring[J]. Photonics Research, 2016, 4(5): 05000168.

References

[1] D. A. B. Miller. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE, 2000, 88: 728-749.

[2] M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, K. Cadien. On-chip optical interconnects. Int. Technol. J., 2004, 8: 129-141.

[3] A. Shacham, K. Bergman, L. P. Carloni. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE. Trans. Comput., 2008, 57: 1246-1260.

[4] J. D. Owens, W. J. Dally, R. Ho, D. J. Jayasimha, S. W. Keckler, L.-S. Peh. Research challenges for on-chip interconnection networks. IEEE Micro, 2007, 27: 96-108.

[5] F. Xia, M. J. Rooks, L. Sekaric, Y. A. Vlasov. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt. Express, 2007, 15: 11934-11941.

[6] Y. Vlasov, W. M. J. Green, F. Xia. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics, 2008, 2: 242-246.

[7] S. J. Mcnab, N. Moll, Y. A. Vlasov. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express, 2003, 11: 2927-2939.

[8] J. T. Kim, J. J. Ju, S. Park, M. Kim, S. K. Park, M.-H. Lee. Chip-to-chip optical interconnect using gold long-range surface plasmon polarition waveguides. Opt. Express, 2008, 16: 13133-13138.

[9] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 2006, 12: 1678-1687.

[10] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 2007, 24: 4600-4615.

[11] M. Asghari, A. V. Krishnamoorthy. Silicon photonics: energy-efficient communication. Nat. Photonics, 2011, 5: 268-270.

[12] Y. Long, A. Wang, L. Zhou, J. Wang. All-optical wavelength conversion and signal regeneration of PAM-4 signal using a silicon waveguide. Opt. Express, 2016, 24: 7158-7167.

[13] L. K. Oxenlowe, H. Ji, M. Galili, M. Pu. Silicon photonics for signal processing of Tbit/s serial data signals. IEEE J. Sel. Top. Quantum Electron., 2012, 18: 996-1005.

[14] X. Hu, Y. Long, M. Ji, A. Wang, L. Zhu, Z. Ruan, Y. Wang, J. Wang. Graphene–silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt. Express, 2016, 24: 7168-7177.

[15] L. Xu, W. Zhang, Q. Li, J. Chan, H. L. R. Lira, M. Lipson, K. Bergman. 40-Gb/s DPSK data transmission through a silicon microring switch. IEEE Photon. Technol. Lett., 2012, 24: 473-475.

[16] Y. Long, J. Wang. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces. Sci. Rep., 2014, 4: 5409.

[17] H. L. Lira, C. B. Poitras, M. Lipson. CMOS compatible reconfigurable filter for high bandwidth non-blocking operation. Opt. Express, 2011, 19: 20115-20121.

[18] J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, M. Lipson. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt. Express, 2010, 18: 26525-26534.

[19] Y. Long, J. Wang. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Opt. Express, 2015, 23: 17739-17750.

[20] Y. Long, J. Wang. All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment. Opt. Express, 2015, 23: 17758-17771.

[21] ChenX.LeeB. G.LiuX.SmallB. A.HsiehI.DadapJ.BergmanK.OsgoodR. M.Jr., “Demonstration of 300 Gbps error-free transmission of WDM data stream in silicon photonic wires,” in Proceedings of Conference on Lasers Electro-Optics (CLEO), Baltimore, Maryland, (2007), paper CtuQ5.

[22] Y. Long, J. Liu, X. Hu, A. Wang, L. Zhou, K. Zou, Y. Zhu, F. Zhang, J. Wang. All-optical multi-channel wavelength conversion of Nyquist 16-QAM signal using a silicon waveguide. Opt. Lett., 2015, 40: 5475-5478.

[23] D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, T. Wang. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands. J. Lightwave Technol., 2012, 30: 1540-1548.

[24] B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, K. Bergman. Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks. IEEE Photon. Technol. Lett., 2008, 20: 398-400.

[25] J. D. B. Bradley, M. C. Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J.-C. Simon, M. Pollnau. 170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. Opt. Express, 2009, 17: 22201-22208.

[26] P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud. 100-Gb/s DQPSK transmission: from laboratory experiments to field trials. J. Lightwave Technol., 2008, 26: 3388-3402.

[27] C. Gui, C. Li, Q. Yang, J. Wang. Demonstration of terabit-scale data transmission in silicon vertical slot waveguides. Opt. Express, 2015, 23: 9736-9745.

[28] F. Horlin, J. Fickers, P. Emplit, A. Bourdoux, J. Louveaux. Dual-polarization OFDM-OQAM for communications over optical fibers with coherent detection. Opt. Express, 2013, 21: 6409-6421.

[29] Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, S. Yu. Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system. Opt. Express, 2013, 21: 21924-21931.

Chengcheng Gui, Jian Wang. Experimental performance evaluation of quadrature amplitude modulation signal transmission in a silicon microring[J]. Photonics Research, 2016, 4(5): 05000168.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!