激光与光电子学进展, 2020, 57 (9): 093002, 网络出版: 2020-05-06   

耦合机器学习和机载高光谱数据的土壤含水量估算 下载: 1213次

Coupled Machine Learning and Unmanned Aerial Vehicle Based Hyperspectral Data for Soil moisture Content Estimation
田美玲 1,2,3,**葛翔宇 1,2,3丁建丽 1,2,3,*王敬哲 1,2,3张振华 1,2,3
作者单位
1 新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046
2 新疆大学绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
3 新疆大学智慧城市与环境建模自治区普通高校重点实验室, 新疆 乌鲁木齐 830046
引用该论文

田美玲, 葛翔宇, 丁建丽, 王敬哲, 张振华. 耦合机器学习和机载高光谱数据的土壤含水量估算[J]. 激光与光电子学进展, 2020, 57(9): 093002.

Meiling Tian, Xiangyu Ge, Jianli Ding, Jingzhe Wang, Zhenhua Zhang. Coupled Machine Learning and Unmanned Aerial Vehicle Based Hyperspectral Data for Soil moisture Content Estimation[J]. Laser & Optoelectronics Progress, 2020, 57(9): 093002.

参考文献

[1] Park J, Baik J, Choi M. Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia[J]. Catena, 2017, 156: 305-314.

[2] 张智韬, 王海峰, 韩文霆, 等. 基于无人机多光谱遥感的土壤含水率反演研究[J]. 农业机械学报, 2018, 49(2): 173-181.

    Zhang Z T, Wang H F, Han W T, et al. Inversion of soil moisture content based on multispectral remote sensing of UAVs[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 173-181.

[3] Sankey T T. McVay J, Swetnam T L, et al. UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring[J]. Remote Sensing in Ecology & Conservation, 2018, 4(1): 20-33.

[4] Cheng H, Shen R L, Chen Y Y, et al. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy[J]. Geoderma, 2019, 336: 59-67.

[5] 葛翔宇, 丁建丽, 王敬哲, 等. 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算[J]. 光学学报, 2018, 38(10): 1030001.

    Ge X Y, Ding J L, Wang J Z, et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning[J]. Acta Optica Sinica, 2018, 38(10): 1030001.

[6] 张子鹏, 丁建丽, 王敬哲. 基于谐波分析算法的干旱区绿洲土壤光谱特性研究[J]. 光学学报, 2019, 39(2): 0228003.

    Zhang Z P, Ding J L, Wang J Z. Spectral characteristics of oasis soil in arid area based on harmonic analysis algorithm[J]. Acta Optica Sinica, 2019, 39(2): 0228003.

[7] 苗松, 王睿, 李建超, 等. 基于哨兵3A-OLCI影像的内陆湖泊藻蓝蛋白浓度反演算法研究[J]. 红外与毫米波学报, 2018, 37(5): 621-630.

    Miao S, Wang R, Li J C, et al. Retrieval algorithm of phycocyanin concentration in inland lakes from sentinel 3A-OLCI images[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 621-630.

[8] 王娜, 李强子, 杜鑫, 等. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017, 21(4): 519-530.

    Wang N, Li Q Z, Du X, et al. Identification of main crops based on the univariate feature selection in Subei[J]. Journal of Remote Sensing, 2017, 21(4): 519-530.

[9] Zamani Joharestani M, Cao C X, Ni X L, et al. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data[J]. Atmosphere, 2019, 10(7): 373.

[10] Song W Z, Jia H F, Huang J F, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014, 154: 1-7.

[11] 袁婕, 张飞, 葛翔宇, 等. 地理加权回归模型结合高光谱反演盐生植物叶片盐离子含量[J]. 农业工程学报, 2019, 35(10): 115-124.

    Yuan J, Zhang F, Ge X Y, et al. Leaf salt ion content estimation of halophyte plants based on geographically weighted regression model combined with hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 115-124.

[12] Ge X, Wang J, Ding J, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring[J]. PeerJ, 2019, 7: e6926.

[13] 王敬哲, 丁建丽, 马轩凯, 等. 基于光谱指数的绿洲农田土壤含水率无人机高光谱检测[J]. 农业机械学报, 2018, 49(11): 164-172.

    Wang J Z, Ding J L, Ma X K, et al. Detection of soil moisture content based on UAV-derived hyperspectral imagery and spectral index in oasis cropland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 164-172.

[14] 孙俊, 丛孙丽, 毛罕平, 等. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型[J]. 农业工程学报, 2017, 33(5): 178-184.

    Sun J, Cong S L, Mao H P, et al. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 178-184.

[15] Menze B H, Kelm B M, Masuch R, et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data[J]. BMC Bioinformatics, 2009, 10(1): 213.

[16] Friedman J H . Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.

[17] Im J, Jensen J R. Hyperspectral remote sensing of vegetation[J]. Geography Compass, 2008, 2(6): 1943-1961.

[18] Schoo R N, Ray S S, Manjunath K R. Hyperspectral remote sensing of agriculture[J]. Current Science, 2015, 108(5): 848-859.

[19] 包青岭, 丁建丽, 王敬哲. 利用随机森林方法优选光谱特征预测土壤水分含量[J]. 激光与光电子学进展, 2018, 55(11): 113002.

    Bao Q L, Ding J L, Wang J Z. Prediction of soil moisture content by selecting spectral characteristics using random forest method[J]. Laser & Optoelectronics Progress, 2018, 55(11): 113002.

[20] Wang J Z, Ding J L, Abulimiti A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China[J]. PeerJ, 2018, 6: e4703.

[21] 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3): 533-544.

    Jiang Z L, Yang Y S, Sha J M. Application of GWR model in hyperspectral prediction of soil heavy metals[J]. Acta Geographica Sinica, 2017, 72(3): 533-544.

[22] 罗梅, 郭龙, 张海涛, 等. 基于环境变量的中国土壤有机碳空间分布特征[J]. 土壤学报, 2020( 1): 48- 69.

    LuoM, GuoL, Zhang HT, et al. Characterization of spatial distribution of soil organic carbon in China based on environmental variables[J]. Acta Pedologica Sinica, 2020( 1): 48- 69.

[23] Yue Y M, Wang K L, Zhang B, et al. Exploring the relationship between vegetation spectra and eco-geo-environmental conditions in Karst region, Southwest China[J]. Environmental Monitoring and Assessment, 2010, 160(1/2/3/4): 157-168.

[24] 史舟, 徐冬云, 滕洪芬, 等. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展, 2018, 37(1): 79-92.

    Shi Z, Xu D Y, Teng H F, et al. Soil information acquisition based on remote sensing and proximal soil sensing: current status and prospect[J]. Progress in Geography, 2018, 37(1): 79-92.

田美玲, 葛翔宇, 丁建丽, 王敬哲, 张振华. 耦合机器学习和机载高光谱数据的土壤含水量估算[J]. 激光与光电子学进展, 2020, 57(9): 093002. Meiling Tian, Xiangyu Ge, Jianli Ding, Jingzhe Wang, Zhenhua Zhang. Coupled Machine Learning and Unmanned Aerial Vehicle Based Hyperspectral Data for Soil moisture Content Estimation[J]. Laser & Optoelectronics Progress, 2020, 57(9): 093002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!