中国激光, 2018, 45 (12): 1204006, 网络出版: 2019-05-09   

利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量 下载: 1506次

Human Magnetoencephalography Measurement by Highly Sensitive SERF Atomic Magnetometer
作者单位
浙江工业大学理学院生物与医学物理信息技术协同创新中心, 浙江 杭州 310023
引用该论文

黄圣洁, 张桂迎, 胡正珲, 林强. 利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量[J]. 中国激光, 2018, 45(12): 1204006.

Shengjie Huang, Guiying Zhang, Zhenghui Hu, Qiang Lin. Human Magnetoencephalography Measurement by Highly Sensitive SERF Atomic Magnetometer[J]. Chinese Journal of Lasers, 2018, 45(12): 1204006.

参考文献

[1] Cheyne D, Bostan A C, Gaetz W, et al. Event-related beamforming: a robust method for presurgical functional mapping using MEG[J]. Clinical Neurophysiology, 2007, 118(8): 1691-1704.

[2] Colon A J, Ossenblok P, Nieuwenhuis L, et al. Use of routine MEG in the primary diagnostic process of epilepsy[J]. Journal of Clinical Neurophysiology, 2009, 26(5): 326-332.

[3] Gratta C D, Pizzella V, Tecchio F, et al. Magnetoencephalography: a noninvasive brain imaging method with 1 ms time resolution[J]. Reports on Progress in Physics, 2001, 64(12): 1759-1814.

[4] Cohen D, Cuffin B N. Demonstration of useful differences between magnetoencephalogram and electroencephalogram[J]. Electroencephalography and Clinical Neurophysiology, 1983, 56(1): 38-51.

[5] Hamalainen M, Hari R, Ilmoniemi R J, et al. Magnetoencephalography:theory, instrumentation, and applications to noninvasive studies of the working human brain[J]. Reviews of Modern Physics, 1993, 65(2): 413-497.

[6] Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer[J]. Science, 1972, 175(4022): 664-666.

[7] Liang S Q, Yang G Q, Xu Y F, et al. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer[J]. Optics Express, 2014, 22(6): 6837-6843.

[8] Budker D, Gawlik W, Kimball D F, et al. Resonant nonlinear magneto-optical effects in atoms[J]. Physical Review, 2002, 74(4): 1153-1201.

[9] Yang A L, Yang G Q, Cai X M, et al. A laser pump-re-pump atomic magnetometer[J]. Chinese Physics B, 2013, 22(12): 120702.

[10] Happer W, Tang H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors[J]. Physical Review Letters, 1973, 31(5): 273-276.

[11] Happer W, Tang H. Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors[J]. Physical Review A, 1977, 16(5): 1877-1891.

[12] Dang H B, Maloof A C, Romalis M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 151110.

[13] Sander T H, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990.

[14] Xia H. Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 211104.

[15] Johnson C. Schwindt P D D, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer[J]. Applied Physics Letters, 2010, 97(24): 243703.

[16] Kamada K, Sato D, Ito Y, et al. Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer[J]. Japanese Journal of Applied Physics, 2015, 54(2): 026601.

[17] Colombo A P, Carter T R, Borna A, et al. Four-channel optically pumped atomic magnetometer for magnetoencephalography[J]. Optics Express, 2016, 24(14): 15403-15416.

[18] Boto E, Holmes N, Leggett J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661.

[19] Sheng J W, Wan S G, Sun Y F, et al. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer[J]. Review of Scientific Instruments, 2017, 88(9): 094304.

[20] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.

[21] Kornack T W, Smullin S J, Lee S K, et al. A low-noise ferrite magnetic shield[J]. Applied Physics Letters, 2007, 90(22): 223501.

[22] Smullin S J, Savukov I M, Vasilakis G, et al. Low-noise high-density alkali-metal scalar magnetometer[J]. Physical Review A, 2009, 80(33): 033420.

[23] Ledbetter M P, Savukov I M, Acosta V M, et al. Spin-exchange-relaxation-free magnetometry with Cs vapor[J]. Physical Review A, 2008, 77(3): 033408.

[24] Kominis I K, Kornack T W, Allred J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932): 596-599.

[25] Hansen PC, Kringelbach ML, SalmelinR. MEG: an introduction to methods[M]. Oxford: Oxford University Press, 2010: 35, 169.

黄圣洁, 张桂迎, 胡正珲, 林强. 利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量[J]. 中国激光, 2018, 45(12): 1204006. Shengjie Huang, Guiying Zhang, Zhenghui Hu, Qiang Lin. Human Magnetoencephalography Measurement by Highly Sensitive SERF Atomic Magnetometer[J]. Chinese Journal of Lasers, 2018, 45(12): 1204006.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!