激光与光电子学进展, 2020, 57 (17): 170004, 网络出版: 2020-09-01   

自由空间激光时频传输研究进展 下载: 1493次

Research Progress on Free-Space Laser Time-Frequency Transfer
作者单位
1 电子信息控制重点实验室, 四川 成都 610036
2 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
3 中国科学院上海光学精密机械研究所中科院量子光学重点实验室, 上海 201800
引用该论文

孙延光, 徐敏, 陈亚晴, 吴瑞, 桂有珍, 程楠, 应康, 杨飞, 蔡海文. 自由空间激光时频传输研究进展[J]. 激光与光电子学进展, 2020, 57(17): 170004.

Yanguang Sun, Min Xu, Yaqing Chen, Rui Wu, Youzhen Gui, Nan Chen, Kang Ying, Fei Yang, Haiwen Cai. Research Progress on Free-Space Laser Time-Frequency Transfer[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170004.

参考文献

[1] Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

[2] Riehle F. Optical clock networks[J]. Nature Photonics, 2017, 11(1): 25-31.

[3] Foreman S M, Holman K W, Hudson D D, et al. Remote transfer of ultrastable frequency references via fiber networks[J]. Review of Scientific Instruments, 2007, 78(2): 021101.

[4] He Y B. Baldwin K G H, Orr B J, et al. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy[J]. Optica, 2018, 5(2): 138-146.

[5] Zhu X, Wang B, Guo Y C, et al. Robust fiber-based frequency synchronization system immune to strong temperature fluctuation[J]. Chinese Optics Letters, 2018, 16(1): 010605.

[6] 梁益丰, 许江宁, 吴苗, 等. 光纤时频同步技术研究现状及发展趋势[J]. 激光与光电子学进展, 2020, 57(5): 050004.

    Liang Y F, Xu J N, Wu M, et al. Research progress on fiber time-frequency synchronization technology[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050004.

[7] Frank F, Stefani F, Tuckey P, et al. A sub-ps stability time transfer method based on optical modems[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(6): 1001-1006.

[8] Kim J, Cox J A, Chen J, et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nature Photonics, 2008, 2(12): 733-736.

[9] Deng X, Liu J, Jiao D D, et al. Coherent transfer of optical frequency over 112 km with instability at the 10-20 level[J]. Chinese Physics Letters, 2016, 33(11): 114202.

[10] Guillou-Camargo F, Ménoret V, Cantin E, et al. First industrial-grade coherent fiber link for optical frequency standard dissemination[J]. Applied Optics, 2018, 57(25): 7203-7210.

[11] Giorgetta F R, Swann W C, Sinclair L C, et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 2013, 7(6): 434-438.

[12] Sprenger B, Zhang J, Lu Z, et al. Atmospheric transfer of optical and radio frequency clock signals[J]. Optics Letters, 2009, 34(7): 965-967.

[13] DjerroudK, SamainE, ClaironA, et al. A coherent optical link through the turbulent atmosphere[C]∥EFTF-2010 24th European Frequency and Time Forum, April 13-16, 2010, Noordwijk, Netherlands. New York: IEEE, 2010: 1- 6.

[14] Alatawi A, Gollapalli R P, Duan L Z. Radio-frequency clock delivery via free-space frequency comb transmission[J]. Optics Letters, 2009, 34(21): 3346-3348.

[15] Sinclair L C, Giorgetta F R, Swann W C, et al. Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer[J]. Physical Review A, 2014, 89(2): 023805.

[16] Sinclair L C, Swann W C, Bergeron H, et al. Synchronization of clocks through 12 km of strongly turbulent air over a City[J]. Applied Physics Letters, 2016, 109(15): 151104.

[17] Sinclair L C, Bergeron H, Swann W C, et al. Femtosecond optical two-way time-frequency transfer in the presence of motion[J]. Physical Review A, 2019, 99(2): 023844.

[18] Sinclair L C, Swann W C, Deschênes J D, et al. Optical system design for femtosecond-level synchronization of clocks[J]. Proceedings of SPIE, 2016, 9763: 976308.

[19] Deschênes J D, Sinclair L C, Giorgetta F R, et al. Synchronization of distant optical clocks at the femtosecond level[J]. Physical Review X, 2016, 6(2): 021016.

[20] 苗菁. 自由空间时间频率同步[D]. 北京: 清华大学, 2015.

    MiaoJ. Time and frequency synchronization in free space[D]. Beijing: Tsinghua Univesity, 2015.

[21] 侯冬, 张大年, 孙富宇, 等. 高精度自由空间时间与频率传递研究[J]. 时间频率学报, 2018, 41(3): 219-227.

    Hou D, Zhang D N, Sun F Y, et al. Research on high-precision free-space time and frequency transfer[J]. Journal of Time and Frequency, 2018, 41(3): 219-227.

[22] Chen S J, Sun F Y, Bai Q S, et al. Sub-picosecond timing fluctuation suppression in laser-based atmospheric transfer of microwave signal using electronic phase compensation[J]. Optics Communications, 2017, 401: 18-22.

[23] Guo G K, Hou D, Sun F Y, et al. Laser-based atmospheric radio-frequency transfer with sub-picosecond timing fluctuation using single phase compensator[J]. Optics Communications, 2018, 426: 526-530.

[24] Sun F Y, Hou D, Zhang D N, et al. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction[J]. Optics Express, 2017, 25(18): 21312-21320.

[25] Hou D, Zhang D N, Sun F Y, et al. Free-space-based multiple-access frequency dissemination with optical frequency comb[J]. Optics Express, 2018, 26(15): 19199-19205.

[26] Yue C L, Li J W, Sun J F, et al. Homodyne coherent optical receiver for intersatellite communication[J]. Applied Optics, 2018, 57(27): 7915-7923.

[27] Lu S W, Gao M, Yang Y, et al. Inter-satellite laser communication system based on double Risley prisms beam steering[J]. Applied Optics, 2019, 58(27): 7517-7522.

[28] Feng Z T, Zhang X, Wu R, et al. High-stability and multithreading phase-coherent receiver for simultaneous transfer of stabilized optical and radio frequencies[J]. Optics Letters, 2019, 44(10): 2418-2421.

[29] Feng Z T, Yang F, Zhang X, et al. Ultra-low noise optical injection locking amplifier with AOM-based coherent detection scheme[J]. Scientific Reports, 2018, 8(1): 13135.

[30] Jiang M Y, Chen Y Q, Cheng N, et al. Multi-access RF frequency dissemination based on round-trip three-wavelength optical compensation technique over fiber-optic link[J]. IEEE Photonics Journal, 2019, 11(3): 1-8.

[31] Chen Y Q, Cai H W, Jiang M Y, et al. Stable radio frequency transfer over free space by passive phase correction[J]. IEEE Photonics Journal, 2019, 11(6): 1-8.

[32] Kang J, Shin J, Kim C, et al. Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer[J]. Optics Express, 2014, 22(21): 26023-26031.

[33] Meng W D, Zhang H F, Huang P C, et al. Design and experiment of onboard laser time transfer in Chinese Beidou navigation satellites[J]. Advances in Space Research, 2013, 51(6): 951-958.

[34] Prochazka I, Yang F M. Photon counting module for laser time transfer via Earth orbiting satellite[J]. Journal of Modern Optics, 2009, 56: 253-260.

[35] Fridelance P, Samain E, Veillet C. T2L2 - Time transfer by Laser link: a new optical time transfer generation[J]. Experimental Astronomy, 1997, 7(3): 191-207.

[36] Samain E, Fridelance P. Time transfer by laser link (T2L2) experiment on mir[J]. Metrologia, 1998, 35(3): 151-159.

[37] Exertier P, Samain E, Bonnefond P, et al. Status of the T2L2/Jason2 experiment[J]. Advances in Space Research, 2010, 46(12): 1559-1565.

[38] Exertier P, Samain E, Courde C, et al. Sub-ns time transfer consistency: a direct comparison between GPS CV and T2L2[J]. Metrologia, 2016, 53(6): 1395-1401.

[39] Samain E, Rovera G D, Torre J M, et al. Time transfer by laser link (T2L2) in noncommon view between Europe and China[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65(6): 927-933.

[40] SchreiberU, ProchazkaI, LauberP, et al. The European laser timing (ELT) experiment on-board ACES[C]∥2009 IEEE International Frequency Control Symposium Joint With the 22nd European Frequency and Time Forum, April 20-24, 2009, Besancon, France. New York: IEEE, 2009: 594- 599.

[41] Schreiber K U, Prochazka I, Lauber P, et al. Ground-based demonstration of the European Laser Timing (ELT) experiment[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(3): 728-737.

[42] ProchazkaI, KodetJ, BlazejJ, et al. Calibration of system delays in the European Laser Timing to 10 ps accuracy[C]∥2014 European Frequency and Time Forum (EFTF), June 23-26, 2014, Neuchatel, Switzerland. New York: IEEE, 2014: 223- 226.

孙延光, 徐敏, 陈亚晴, 吴瑞, 桂有珍, 程楠, 应康, 杨飞, 蔡海文. 自由空间激光时频传输研究进展[J]. 激光与光电子学进展, 2020, 57(17): 170004. Yanguang Sun, Min Xu, Yaqing Chen, Rui Wu, Youzhen Gui, Nan Chen, Kang Ying, Fei Yang, Haiwen Cai. Research Progress on Free-Space Laser Time-Frequency Transfer[J]. Laser & Optoelectronics Progress, 2020, 57(17): 170004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!