人工晶体学报, 2021, 50 (2): 260, 网络出版: 2021-03-30  

弛豫铁电0.24PIN-0.47PMN-0.29PT单晶声表面波性能研究

Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals
作者单位
1 大庆师范学院机电工程学院,大庆 163712
2 哈尔滨工业大学物理系,哈尔滨 150080
引用该论文

李秀明, 吴广涛, 张锐. 弛豫铁电0.24PIN-0.47PMN-0.29PT单晶声表面波性能研究[J]. 人工晶体学报, 2021, 50(2): 260.

LI Xiuming, WU Guangtao, ZHANG Rui. Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2021, 50(2): 260.

参考文献

[1] GORLA C R, EMANETOGLU N W, LIANG S, et al. Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011-2) sapphire by metalorganic chemical vapor deposition[J]. Journal of Applied Physics, 1999, 85(5): 2595-2602.

[2] ARSAT R, BREEDON M, SHAFIEI M, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications[J]. Chemical Physics Letters, 2009, 467(4/5/6): 344-347.

[3] DING X Y, LI P, LIN S C S, et al. Surface acoustic wave microfluidics[J]. Lab on a Chip, 2013, 13(18): 3626-3649.

[4] MUNK D, KATZMAN M, HEN M, et al. Surface acoustic wave photonic devices in silicon on insulator[J]. Nature Communications, 2019, 10(1): 4214.

[5] 盛正茂,覃亚丽,谢长明.改进型梯形谐振滤波器的带通滤波器设计[J].电声技术,2011,35(7):31-32+37.

[6] SYAMSU I, GRANZ T, SCHOLZ G, et al. Design and fabrication of AlN-on-Si chirped surface acoustic wave resonators for label-free cell detection[J]. Journal of Physics: Conference Series, 2019, 1319: 012011.

[7] YANG J, RáCZ Z, GARDNER J W, et al. Ratiometric info-chemical communication system based on polymer-coated surface acoustic wave microsensors[J]. Sensors and Actuators B: Chemical, 2012, 173: 547-554.

[8] OGURA H, TAKAYANAGI S, ABE K, et al. Design of zinc oxide-based surface acoustic wave sensors using a graphene electrode[J]. Japanese Journal of Applied Physics, 2019, 58(SA): SAAE03.

[9] LI G, TIAN F H, GAO X Y, et al. Investigation of high-power properties of PIN-PMN-PT relaxor-based ferroelectric single crystals and PZT-4 piezoelectric ceramics[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(8): 1641-1646.

[10] SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 2014, 65: 124-210.

[11] BOKOV A A, YE Z G. Dielectric relaxation in relaxor ferroelectrics[J]. Journal of Advanced Dielectrics, 2012, 2(2): 1241010.

[12] ZHANG S J, LI F. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective[J]. Journal of Applied Physics, 2012, 111(3): 031301.

[13] SUN E W, ZHANG S J, LUO J, et al. Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]C[J]. Applied Physics Letters, 2010, 97(3): 032902.

[14] HOSONO Y, YAMASHITA Y, SAKAMOTO H, et al. Growth of single crystals of high-curie-temperature Pb(In1/2Nb1/2)o3-Pb(Mg1/3Nb2/3)O3-PbTiO3Ternary systems near morphotropic phase boundary[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9A): 5681-5686.

[15] SUN P, ZHOU Q, ZHU B, et al. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(12): 2760-2763.

[16] LI X, MA T, TIAN J, et al. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(7): 1171-1178.

[17] KIM K, ZHANG S, ZHANG S, et al. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(11): 2548-2554.

[18] SUN E, ZHANG R, WU F, et al. Influence of manganese doping to the full tensor properties of 0.24Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals[J]. J Appl Phys, 2013, 113(7): 74108.

[19] CHOI K H, OH J H, KIM H J, et al. Surface acoustic wave propagation properties of the relaxor ferroelectric PMN-PT single crystal[C]//2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263). October 7-10, 2001, Atlanta, GA, USA. IEEE, 2001: 161-163.

[20] 张振东.PMNT单晶声表面波和兰姆波传播特性及其激光超声测量[D].哈尔滨:哈尔滨工业大学,2016:33-34.

[21] KARAKI T, NAKAMOTO M, SUMIYOSHI Y, et al. Top-seeded solution growth of Pb[(In1/2Nb1/2), (Mg1/3Nb2/3), Ti]O3Single crystals[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 9B): 6059-6061.

[22] SUN E W, ZHANG R, WU F M, et al. Complete matrix properties of [001]c and [011]c poled 0.33Pb(In1/2Nb1/2)O3-0.38Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystals[J]. Journal of Alloys and Compounds, 2013, 553: 267-269.

[23] LI X M, ZHANG R, HUANG N X, et al. Surface acoustic wave propagation in relaxor-based ferroelectric single crystals 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 poled along [011]c[J]. Chinese Physics Letters, 2012, 29(2): 024302.

李秀明, 吴广涛, 张锐. 弛豫铁电0.24PIN-0.47PMN-0.29PT单晶声表面波性能研究[J]. 人工晶体学报, 2021, 50(2): 260. LI Xiuming, WU Guangtao, ZHANG Rui. Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2021, 50(2): 260.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!