Photonics Research, 2020, 8 (7): 07001072, Published Online: Jun. 3, 2020   

Computational 4D imaging of light-in-flight with relativistic effects Download: 653次

Author Affiliations
1 School of Instrumentation Science and Opto-electronic Engineering, Beihang University, Beijing 100191, China
2 School of Physics, Beihang University, Beijing 100191, China
3 School of Physics and Astronomy, University of Glasgow, Glasgow G128QQ, UK
Copy Citation Text

Yue Zheng, Ming-Jie Sun, Zhi-Guang Wang, Daniele Faccio. Computational 4D imaging of light-in-flight with relativistic effects[J]. Photonics Research, 2020, 8(7): 07001072.

References

[1] L. Gao, J. Liang, C. Li, L. V. Wang. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 2014, 516: 74-77.

[2] T. Gorkhover, S. Schorb, R. Coffee, M. Adolph, L. Foucar, D. Rupp, A. Aquila, J. D. Bozek, S. W. Epp, B. Erk, L. Gumprecht, L. Holmegaard, A. Hartmann, R. Hartmann, G. Hauser, P. Holl, A. Hömke, P. Johnsson, N. Kimmel, K.-U. Kühnel, M. Messerschmidt, C. Reich, A. Rouzée, B. Rudek, C. Schmidt, J. Schulz, H. Soltau, S. Stern, G. Weidenspointner, B. White, J. Küpper, L. Strüder, I. Schlichting, J. Ullrich, D. Rolles, A. Rudenko, T. Möller, C. Bostedt. Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nat. Photonics, 2016, 10: 93-97.

[3] M. B. Bouchard, B. R. Chen, S. A. Burgess, E. M. C. Hillman. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Opt. Express, 2009, 17: 15670-15678.

[4] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu, K. Zhao, R. Li, T.-W. Lam. SOAP3: ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics, 2012, 28: 878-879.

[5] J. Liang, L. V. Wang. Single-shot ultrafast optical imaging. Optica, 2018, 5: 1113-1127.

[6] J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht. Two-photon excitation of fluorescence by picosecond light pulses. Appl. Phys. Lett., 1967, 11: 216-218.

[7] N. Abramson. Light-in-flight recording by holography. Opt. Lett., 1978, 3: 121-123.

[8] T. L. Cocker, D. Peller, P. Yu, J. Repp, R. Huber. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 2016, 539: 263-267.

[9] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 2009, 458: 1145-1149.

[10] K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, I. Sakuma. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 2014, 8: 695-700.

[11] T. Kakue, K. Tosa, J. Yuasa, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota. Digital light-in-flight recording by holography by use of a femtosecond pulsed laser. IEEE J. Sel. Top. Quantum Electron., 2012, 18: 479-485.

[12] A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, R. Raskar. Femto-photography: capturing and visualizing the propagation of light. ACM Trans. Graph., 2013, 32: 44.

[13] L. Zhu, Y. Chen, J. Liang, Q. Xu, L. Gao, C. Ma, L. V. Wang. Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 2016, 3: 694-697.

[14] F. Heide, M. B. Hullin, J. Gregson, W. Heidrich. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph., 2013, 32: 45.

[15] A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, R. Raskar. Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph., 2013, 32: 167.

[16] C. Niclass, M. Gersbach, R. Henderson, L. Grant, E. Charbon. A single photon avalanche diode implemented in 130-nm CMOS technology. IEEE J. Sel. Top. Quantum Electron., 2007, 13: 863-869.

[17] D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, W. Brockherde. 100000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 354-363.

[18] J. M. Hill, B. J. Cox. Einstein’s special relativity beyond the speed of light. Proc. R. Soc. A, 2012, 468: 4174-4192.

[19] VeltenA.WuD.JaraboA.MasiaB.BarsiC.LawsonE.JoshiC.GutierrezD.BawendiM. G.RaskarR., “Relativistic ultrafast rendering using time-of-flight imaging,” in ACM SIGGRAPH 2012 (2012), paper 41.

[20] M. Laurenzis, J. Klein, E. Bacher, N. Metzger. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths. Opt. Lett., 2015, 40: 4815-4818.

[21] M. Clerici, G. C. Spalding, R. Warburton, A. Lyons, C. Aniculaesei, J. M. Richards, J. Leach, R. Henderson, D. Faccio. Observation of image pair creation and annihilation from superluminal scattering sources. Sci. Adv., 2016, 2: e1501691.

[22] N. Abramson. Light-in-flight recording 3: compensation for optical relativistic effects. Appl. Opt., 1984, 23: 4007-4014.

[23] A. Jarabo, B. Masia, A. Velten, C. Barsi, R. Raskar, D. Gutierrez. Relativistic effects for time-resolved light transport. Comput. Graph. Forum., 2015, 34: 1-12.

[24] G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, D. Faccio. Single-photon sensitive light-in-fight imaging. Nat. Commun., 2015, 6: 6021.

[25] M. Laurenzis, J. Klein, E. Bacher. Relativistic effects in imaging of light in flight with arbitrary paths. Opt. Lett., 2016, 41: 2001-2004.

[26] M. Laurenzis, J. Klein, E. Bacher, N. Metzger, F. Christnacher. Sensing and reconstruction of arbitrary light-in-flight paths by a relativistic imaging approach. Proc. SPIE, 2016, 9988: 998804.

[27] G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides. Observation of accelerating Airy beams. Phys. Rev. Lett., 2007, 99: 213901.

[28] I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman, P. Dalgarno, R. K. Henderson. A 256 × 256, 100-kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications. IEEE Trans. Electron. Devices, 2018, 65: 547-554.

[29] T. G. Etoh, T. Okinaka, Y. Takano, K. Takehara, H. Nakano, K. Shimonomura, T. Ando, N. Ngo, Y. Kamakura, V. T. S. Dao, A. Q. Nguyen, E. Charbon, C. Zhang, P. De Moor, P. Goetschalckx, L. Haspeslagh. Light-in-flight imaging by a silicon image sensor: toward the theoretical highest frame rate. Sensors, 2019, 19: 2247.

Yue Zheng, Ming-Jie Sun, Zhi-Guang Wang, Daniele Faccio. Computational 4D imaging of light-in-flight with relativistic effects[J]. Photonics Research, 2020, 8(7): 07001072.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!