Photonics Research, 2018, 6 (12): 12001171, Published Online: Dec. 3, 2018   

Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity

Author Affiliations
School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China (chenphysics@126.com)
Copy Citation Text

Hua-Jun Chen. Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity[J]. Photonics Research, 2018, 6(12): 12001171.

References

[1] H. Mabuchi, A. C. Doherty. Cavity quantum electrodynamics: coherence in context. Science, 2002, 298: 1372-1377.

[2] K. J. Vahala. Optical microcavities. Nature, 2003, 424: 839-846.

[3] C. Monroe. Quantum information processing with atoms and photons. Nature, 2002, 416: 238-246.

[4] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, S. Haroche. Progressive field-state collapse and quantum non-demolition photon counting. Nature, 2007, 448: 889-893.

[5] J. L. O’Brien, A. Furusawa, J. Vuckovic. Photonic quantum technologies. Nat. Photonics, 2009, 3: 687-695.

[6] Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, Q. Gong. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: photon transportation benefitting from Rayleigh scattering. Phys. Rev. A, 2011, 84: 011805.

[7] A. Majumdar, M. Bajcsy, J. Vuckovic. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation. Phys. Rev. A, 2012, 85: 041801.

[8] J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432: 197-200.

[9] E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett., 2005, 95: 067401.

[10] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432: 200-203.

[11] M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, Y. Arakawa. Laser oscillation in a strongly coupled single quantum-dot-nanocavity system. Nat. Phys., 2010, 6: 279-283.

[12] S. Noda, M. Fujita, T. Asano. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics, 2007, 1: 449-458.

[13] W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett., 2006, 96: 117401.

[14] R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, G. Malpuech. Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity. Phys. Rev. Lett., 2008, 100: 240404.

[15] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, A. Imamoglu. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445: 896-899.

[16] T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoglu. Ultrafast all-optical switching by single photons. Nat. Photonics, 2012, 6: 605-609.

[17] R. Bose, D. Sridharan, H. Kim, G. S. Solomon, E. Waks. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett., 2012, 108: 227402.

[18] A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoglu. Strongly correlated photons on a chip. Nat. Photonics, 2012, 6: 93-96.

[19] H. Kim, R. Bose, T. C. Shen, G. S. Solomon, E. Waks. A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics, 2013, 7: 373-377.

[20] A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, A. Imamoglu. Deterministic coupling of single quantum dots to single nanocavity modes. Science, 2005, 308: 1158-1161.

[21] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vuckovic. Controlling cavity reflectivity with a single quantum dot. Nature, 2007, 450: 857-861.

[22] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vuckovic. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 2008, 4: 859-863.

[23] Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, Y. F. Xiao. Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett., 2014, 112: 213602.

[24] E. del Valle, F. P. Laussy. Mollow triplet under incoherent pumping. Phys. Rev. Lett., 2010, 105: 233601.

[25] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, L. J. Sham. Coherent optical spectroscopy of a strongly driven quantum dot. Science, 2007, 317: 929-932.

[26] Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, Q. Gong. Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A, 2011, 83: 019902.

[27] H. Toida, T. Nakajima, S. Komiyama. Vacuum Rabi splitting in a semiconductor circuit QED system. Phys. Rev. Lett., 2013, 110: 066802.

[28] J. Q. Liao, Q. Q. Wu, F. Nori. Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A, 2014, 89: 014302.

[29] B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10: 394-398.

[30] H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 2014, 113: 053604.

[31] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature, 2002, 418: 612-614.

[32] BoydR. W., Nonlinear Optics (Academic, 2008).

[33] WallsD. F.MilburnG. J., Quantum Optics (Springer, 1994), p. 245.

[34] L. M. Duan, H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 2004, 92: 127902.

[35] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 2014, 8: 524-529.

[36] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 1946, 69: 37-38.

[37] J. J. Li, K. D. Zhu. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology, 2011, 22: 055202.

[38] Y. C. Yu, J. F. Liu, X. L. Zhuo, G. Chen, C. J. Jin, X. H. Wang. Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions. Opt. Express, 2013, 21: 23486-23497.

[39] LichtmanneckerS.KaniberM.Echeverri-ArteagaS.AndradeI. C.Ruiz-RivasJ.ReichertT.BeckerM.BlauthM.ReithmaierG.ArdeltP. L.BichlerM.GomezE. A.Vinck-PosadaH.del ValleE.FinleyJ. J., “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Hua-Jun Chen. Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity[J]. Photonics Research, 2018, 6(12): 12001171.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!