中国激光, 2016, 43 (10): 1002006, 网络出版: 2016-10-12   

激光辐照纳米石墨转变产物的显微形貌和结晶

Micromorphology and Crystallinity of Nano-Graphite Transformation Products After Laser Irradiation
作者单位
1 浙江工业大学之江学院, 浙江 杭州 310024
2 浙江工业大学激光先进制造研究院, 浙江 杭州 310014
3 浙江省高端激光制造装备协同创新中心, 浙江 杭州 310014
引用该论文

度骆芳, 王为彬, 陆潇晓, 姚建华. 激光辐照纳米石墨转变产物的显微形貌和结晶[J]. 中国激光, 2016, 43(10): 1002006.

Luo Fang, Wang Weibin, Lu Xiaoxiao, Yao Jianhua. Micromorphology and Crystallinity of Nano-Graphite Transformation Products After Laser Irradiation[J]. Chinese Journal of Lasers, 2016, 43(10): 1002006.

参考文献

[1] Kroto H W, Heath J R, O′Brien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(14): 162-163.

[2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56-58.

[3] Cai W B, Zeng B Q, Liu J L, et al. Improved field emission property of graphene by laser irradiation[J]. Applied Surface Science, 2013, 284(11): 113-117.

[4] Abdelhamid H N, Wu H F. A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors[J]. Analytica Chimica Acta, 2012, 751(21): 94-104.

[5] Fu B, Gui L L, Zhang W, et al. Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber[J]. Optics Communications, 2013, 286(1): 304-308.

[6] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127-2150.

[7] 肖毅, 张军, 蔡祥, 等. 基于石墨烯的光纤温度传感研究[J]. 光学学报, 2015, 35(4): 0406005.

    Xiao Yi, Zhang Jun, Cai Xiang, et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica,2015,35(4): 0406005.

[8] 翟利, 薛文瑞, 杨荣草, 等. 涂覆石墨烯的电介质纳米并行线的传输特性[J]. 光学学报, 2015, 35(11): 1123002.

    Zhai Li, Xue Wenrui, Yang Rongcao, et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 2015, 35(11): 1123002.

[9] 杨花, 曹阳, 贺军辉, 等. 石墨烯红外光电探测器研究进展[J]. 激光与光电子学进展, 2015, 52(11): 110003.

    Yang Hua, Cao Yang, He Junhui, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003.

[10] Lee K H, Cho J M, Sigmund W. Control of growth orientation for carbon nanotubes[J]. Applied Physics Letters, 2003, 82(3): 448-450.

[11] Keidar M, Levchenko I, Arbel T, et al. Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge[J]. Applied Physics Letters, 2008, 92(4): 043129.

[12] Xing G, Jia S L, Shi Z Q. Influence of transverse magnetic field on the formation of carbon nano-materials by arc discharge in liquid[J]. Carbon, 2007, 45(13): 2584-2588.

[13] Cardall C Y, Prakash M, Lattimer J M. Effects ofstrong magnetic fields on neutron star structure[C]. American Astronomical Society, 2000, 554(1): 322-339.

[14] Kim C D, Jang H S, Lee H R, et al. Low temperature growth of carbon nanotubes in a magnetic field[J]. Materials Letters, 2007, 61(10): 2075-2078.

[15] Ohmae N. Shaping carbon nanotube bundles during growth using a magnetic field[J]. Carbon, 2008, 46(3): 544-546.

[16] Wei D C, Liu Y Q, Cao L C, et al. A magnetism-assisted chemical vapor deposition method to produce branched or iron-encapsulated carbon nan otubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7364-7368.

[17] Sun L F, Liu Z Q, Ma X C, et al. Growth of carbon nanofibers array under magnetic force by chemical vapor deposition[J]. Chemical Physics Letters, 2001, 336(5): 392-396.

[18] Rodriguez N M, Chambers A, Baker R T K. Catalytic engineering of carbon nanostructures[J]. Langmuir, 1995, 11(10): 3862-3866.

[19] Kuvshinov G G, Chukanov I S, Krutsky Y L, et al. Changes in the properties of fibrous nanocarbons during high temperature heat treatment[J]. Carbon, 2009, 47(1): 215-225.

[20] Ceragioli H J, Peterlevitz A C, Quispe J C R, et al. Growth and characterization of carbon nanofibers by a technique of polymer doped catalyst and hot-filament chemical vapor deposition[J]. Vacuum, 2008, 83(2): 273-275.

[21] Kanada R, Pan L J, Akita S J, et al. Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe-Sn as catalyst[J]. Japanese Journal of Applied Physics, 2008, 47(4): 1949-1951.

[22] Wang Y, Santiago-Aviles J J. Large negative magnetoresistance and two-dimensional weak localization in carbon nanofiber fabricated using electrospinning[J]. Journal of Applied Physics, 2003, 94(3): 1721-1727.

[23] 董祥明, 刘世炳, 宋海英. 飞秒激光溅射沉积法制备碳薄膜[J]. 中国激光, 2015, 42(8): 0807002.

    Dong Xiangming, Liu Shibing, Song Haiying. Carbon film fabricated by femtosecond pulse laser deposition[J]. Chinese J Lasers, 2015, 42(8): 0807002.

[24] Zhang Y L, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15-20.

[25] 林喆, 叶晓慧, 韩金鹏, 等. 基于飞秒激光切割的石墨烯图案化研究[J]. 中国激光, 2015, 42(7): 0703002.

    Lin Zhe, Ye Xiaohui, Han Jinpeng, et al. Patterning of graphene by femtosecond laser cutting[J]. Chinese J Lasers, 2015, 42(7): 0703002.

[26] 陈岁元. 刘常升. 材料的激光制备与处理技术[M]. 北京: 冶金工业出版社, 2007: 142.

    Chen Suiyuan, Liu Changsheng. Laser synthesis and processing of materials[M]. Beijing: Metallurgical Industry Press, 2007: 142.

度骆芳, 王为彬, 陆潇晓, 姚建华. 激光辐照纳米石墨转变产物的显微形貌和结晶[J]. 中国激光, 2016, 43(10): 1002006. Luo Fang, Wang Weibin, Lu Xiaoxiao, Yao Jianhua. Micromorphology and Crystallinity of Nano-Graphite Transformation Products After Laser Irradiation[J]. Chinese Journal of Lasers, 2016, 43(10): 1002006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!