量子电子学报, 2015, 32 (2): 129, 网络出版: 2015-04-14   

大气Criegee中间体检测方法研究进展

Advances in atmospheric Criegee intermediates detection methods
作者单位
中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
引用该论文

林晓晓, 刘议蓉, 颜莉莉, 盖艳波, 胡长进, 张杨, 顾学军, 黄腾, 赵卫雄, 黄伟, 张为俊. 大气Criegee中间体检测方法研究进展[J]. 量子电子学报, 2015, 32(2): 129.

LIN Xiaoxiao, LIU Yirong, YAN Lili, GAI Yanbo, HU Changjin, ZHANG Yang, GU Xuejun, HUANG Teng, ZHAO Weixiong, HUANG Wei, ZHANG Weijun. Advances in atmospheric Criegee intermediates detection methods[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 129.

参考文献

[1] Criegee R, Wenner G. Die ozonisierung des 9,10-oktalins [J]. Justus Liebigs Ann. Chem., 1949, 564: 9-15.

[2] Criegee R. Mechanism of ozonolysis [J]. Angew. Chem. Int. Ed. Engl., 1975, 14: 745-752.

[3] Welz O, Savee J D, Osborn D L, et al. Direct kinetic measurements of Criegee intermediate (CH2 OO) formed by reaction of CH2 I with O2 [J]. Science, 2012, 335: 204-207.

[4] Anglada J M, Aplincourt P, Bofill J M, et al. Atmospheric formation of OH radicals and H2 O2 from alkene ozonolysis under humid conditions [J]. Chem. Phys. Phys. Chem., 2002, 3: 215-221.

[5] Harrison R M, Yin J, Tilling R M, et al. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: Overview of the PUMA consortium project [J]. Sci. Total Environ., 2006, 360: 5-25.

[6] Gutbrod R, Schindler R N, Kraka E, et al. Formation of OH radicals in the gas phase ozonolysis of alkenes, the unexpected role of carbonyl oxides [J]. Chem. Phys. Lett., 1996, 252: 221-229.

[7] Taatjes C A, Shallcross D E, Percival C J. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis [J]. Phys. Chem. Chem. Phys., 2014, 16: 1704-18.

[8] Ryzhkov A B, Ariya P A. Reactions of substituted Criegee biradical with water dimer [J]. Phys. Chem. Chem. Phys., 2004, 6: 5042-5050.

[9] Anglada J M, Gonzalez J, Torrent-Sucarrat M. A theoretical study on the reaction of substituted carbonyl oxides with water [J]. Phys. Chem. Chem. Phys., 2011, 13: 13034-13045.

[10] Vereecken L, Francisco J S. Theoretical studies of atmospheric reaction mechanisms in the troposphere [J]. Chem. Soc. Rev., 2012, 41: 6259-6293.

[11] Liu Xianyun, Qian Zhongjian, Wang Xudong, et al. Reaction mechanism and vibrational spectroscopy of OH-initiated isoprene photooxidation [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(6): 658-664 (in Chinese).

[12] Pan Gang, Hu Changjin, Wang Zhenya, et al. Investigation of reaction time evolution of OH-initiated isoprene photooxidation experiment [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(3): 275-279 (in Chinese).

[13] Aplincourt P, Anglada J M. Theoretical studies of the isoprene ozonolysis under tropospheric conditions. 2. Unimolecular and water-assisted decomposition of the α-hydroxy hydroperoxides [J]. J. Phys. Chem. A, 2003, 107: 5812-5820.

[14] Bonn B, Schuster G, Moortgat G K. Influence of water vapor on the process of new particle formation during monoterpene ozonolysis [J]. J. Phys. Chem. A, 2002, 106: 2869-2881.

[15] Bonn B, Schuster G, Moortgat G K. Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons [J]. Geophys. Res. Lett., 2003, 30: 1585.

[16] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds [J]. Chem. Rev., 2003, 103: 4605-4638.

[17] Li J Y, Ying Q, Yi B Q, et al. Role of stabilized Criegee intermediates in the formation of atmospheric sulfate in eastern United States [J]. Atmos. Environ., 2013, 79: 442-447.

[18] Carlsson P T, Keunecke C, Krüger B C, et al. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene [J]. Phys. Chem. Chem. Phys., 2012, 14: 15637-15640.

[19] Cox R A, Penkett S A. Oxidation of atmospheric SO2 by products of the ozone-olefin reaction [J]. Nature, 1971, 230: 321-322.

[20] Cox R A, et al. Aerosol formation from sulphur dioxide in the presence of ozone and olefinic hydrocarbons [J]. J. Chem. Soc., Faraday Trans., 1972, 1(68): 1735-1753.

[21] Calvert J G, Stockwell W R. Acid generation in the troposphere by gas-phase chemistry [J]. Environ. Sci. Technol., 1983, 17: 428A-443A.

[22] Ouyang B, McLeod M W, Jones R L, et al. NO3 radical production from the reaction between the Criegee intermediate CH2 OO and NO2 [J]. Phys. Chem. Chem. Phys., 2013, 15: 17070-17075.

[23] Taatjes C A, Welz O, Eskola A J, et al. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3 CHOO [J]. Science, 2013, 340: 177-180.

[24] Su Y T, Huang Y H, et al. Infrared absorption spectrum of the simplest Criegee intermediate CH2 OO [J]. Science, 2013, 340: 174-176.

[25] Sakamoto Y, Inomata S, Hirokawa J. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis [J]. J. Phys. Chem. A, 2013, 117: 12912-12921.

[26] Vereecken L, Harder H, Novelli A. The reaction of Criegee intermediates with NO, RO2 , and SO2 , and their fate in the atmosphere [J]. Phys. Chem. Chem. Phys., 2012, 14: 14682-14695.

[27] Kuwata K T, Valin L C, Converse A D. Quantum chemical and master equation studies of the methyl vinyl carbonyl oxides formed in isoprene ozonolysis [J]. J. Phys. Chem. A, 2005, 109: 10710-10725.

[28] Long B, Tan X F, Long Z W, et al. Theoretical studies on reactions of the stabilized H2 COO with HO2 and the HO2 {\\mkern 1mu}…H2 O complex [J]. J. Phys. Chem. A, 2011, 115: 6559-6567.

[29] Boyd A A, Canosa-Mas C E, King A D, et al. Use of a stopped-flow technique to measure the rate constants at room temperature for reactions between the nitrate radical and various organic species [J]. J. Chem. Soc., Faraday Trans., 1991, 87: 2913-2919.

[30] Winterhalter R, Neeb P, Grossmann D, et al. Products and mechanism of the gas phase reaction of ozone with β-pinene [J]. J. Atmos. Chem., 2000, 35: 165-197.

[31] Ahrens J, Carlsson P T, Hertl N, et al. Infrared detection of criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide [J]. Angew. Chem. Int. Ed. Engl., 2014, 53: 715-719.

林晓晓, 刘议蓉, 颜莉莉, 盖艳波, 胡长进, 张杨, 顾学军, 黄腾, 赵卫雄, 黄伟, 张为俊. 大气Criegee中间体检测方法研究进展[J]. 量子电子学报, 2015, 32(2): 129. LIN Xiaoxiao, LIU Yirong, YAN Lili, GAI Yanbo, HU Changjin, ZHANG Yang, GU Xuejun, HUANG Teng, ZHAO Weixiong, HUANG Wei, ZHANG Weijun. Advances in atmospheric Criegee intermediates detection methods[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 129.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!