Photonics Research, 2019, 7 (7): 07000742, Published Online: Jun. 17, 2019  

Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation Download: 584次

Author Affiliations
1 School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
2 Department of Energy Systems Research & Department of Physics, Ajou University, Suwon 16499, South Korea
3 e-mail: diyeom@ajou.ac.kr
Copy Citation Text

Dohyun Kim, Nam Hun Park, Hyunju Lee, Jaegoan Lee, Dong-Il Yeom, Jungwon Kim. Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation[J]. Photonics Research, 2019, 7(7): 07000742.

References

[1] A. Derevianko, M. Pospelov. Hunting for topological dark matter with atomic clocks. Nat. Phys., 2014, 10: 933-936.

[2] S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, J. Ye. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D, 2016, 94: 124043.

[3] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 2002, 416: 233-237.

[4] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem. Laser frequency combs for astronomical observations. Science, 2008, 321: 1335-1337.

[5] J. A. Stone, P. Egan. An optical frequency comb tied to GPS for laser frequency/wavelength calibration. J. Res. Natl. Inst. Stand. Technol., 2010, 115: 413-431.

[6] J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, S.-W. Kim. Testing of a femtosecond pulse laser in outer space. Sci. Rep., 2014, 4: 5134.

[7] M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, R. Holzwarth. Space-borne frequency comb metrology. Optica, 2016, 3: 1381-1387.

[8] OttM. N., “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 2431.

[9] M. Lezius, K. Predehl, W. Stöwer, A. Türler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekström, T. W. Hänsch, R. Holzwarth. Radiation induced absorption in rare earth doped optical fibers. IEEE Trans. Nucl. Sci., 2012, 59: 425-433.

[10] O. Berné, M. Caussanel, O. Gilard. A model for the prediction of EDFA gain in a space radiation environment. IEEE Photon. Technol. Lett., 2004, 16: 2227-2229.

[11] Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, S.-W. Kim. Space radiation test of saturable absorber for femtosecond laser. Opt. Lett., 2014, 39: 2831-2834.

[12] G. Buchs, S. Kundermann, E. Portuondo-Campa, S. Lecomte. Radiation hard mode-locked laser suitable as a spaceborne frequency comb. Opt. Express, 2015, 23: 9890-9900.

[13] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 2010, 4: 611-622.

[14] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6: 183-191.

[15] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 2012, 6: 749-758.

[16] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4: 803-810.

[17] G. Sobon, J. Sotor, K. M. Abramski. All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber. Laser Phys. Lett., 2012, 9: 581-586.

[18] N. H. Park, H. Jeong, S. Y. Choi, M. H. Kim, F. Rotermund, D.-I. Yeom. Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking. Opt. Express, 2015, 23: 19806-19812.

[19] E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, D.-I. Yeom. Active control of all-fibre graphene devices with electrical gating. Nat. Commun., 2015, 6: 6851.

[20] E. H. Åhlgren, J. Kotakoski, O. Lehtinen, A. V. Krasheninnikov. Ion irradiation tolerance of graphene as studied by atomistic simulations. Appl. Phys. Lett., 2012, 100: 233108.

[21] E. J. Siochi. Graphene in the sky and beyond. Nat. Nanotechnol., 2014, 9: 745-747.

[22] Y. Wang, Y. Feng, F. Mo, G. Qian, Y. Chen, D. Yu, Y. Wang, X. Zhang. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays. Appl. Phys. Lett., 2014, 105: 023102.

[23] A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, M. T. Martínez. The effect of gamma-irradiation on few-layered graphene materials. Appl. Surf. Sci., 2014, 301: 264-272.

[24] D. N. Kleut, Z. M. Marković, I. D. H. Antunović, M. D. Dramićanin, D. P. Kepić, B. M. T. Marković. Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study. Phys. Scr., 2014, T162: 014025.

[25] K. Alexandrou, A. Masurkar, H. Edrees, J. F. Wishart, Y. Hao, N. Petrone, J. Hone, I. Kymissis. Improving the radiation hardness of graphene field effect transistors. Appl. Phys. Lett., 2016, 109: 153108.

[26] PatilA.KoybasiO.LopezG.FoxeM.ChildresI.RoeckerC.BoguskiJ.GuJ.BolenM. L.CapanoM. A.YeP.JovanovicI.ChenY. P., “Graphene field effect transistor as radiation sensor,” in IEEE Nuclear Science Symposium Conference Record (2011), pp. 455459.

[27] S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier, E. Marin, Y. Ouerdane, A. Boukenter. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt., 2018, 20: 093001.

[28] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706-710.

[29] C.-C. Lee, J. M. Miller, T. R. Schibli. Doping-induced changes in the saturable absorption of monolayer graphene. Appl. Phys. B, 2012, 108: 129-135.

[30] M. H. MacAlester, W. Murtagh. Extreme space weather impact: an emergency management perspective. Space Weather, 2014, 12: 530-537.

[31] E. G. Stassinopoulos, J. P. Raymond. The space radiation environment for electronics. Proc. IEEE, 1988, 76: 1423-1442.

[32] B. R. Bhat, N. Upadhyaya, R. Kulkarni. Total radiation dose at geostationary orbit. IEEE Trans. Nucl. Sci., 2005, 52: 530-534.

[33] FortescueP.SwinerdG.StarkJ., Spacecraft Systems Engineering, 4th ed. (Wiley, 2011), p. 399.

[34] F. A. Mettler, W. Huda, T. T. Yoshizumi, M. Mahesh. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology, 2008, 248: 254-263.

Dohyun Kim, Nam Hun Park, Hyunju Lee, Jaegoan Lee, Dong-Il Yeom, Jungwon Kim. Graphene-based saturable absorber and mode-locked laser behaviors under gamma-ray radiation[J]. Photonics Research, 2019, 7(7): 07000742.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!