Frontiers of Optoelectronics, 2016, 9 (3): 428, 网络出版: 2016-11-23  

Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits

Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits
作者单位
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
引用该论文

Changming CHEN, Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Frontiers of Optoelectronics, 2016, 9(3): 428.

Changming CHEN, Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Frontiers of Optoelectronics, 2016, 9(3): 428.

参考文献

[1] Zami T. Current and future flexible wavelength routing crossconnects. Bell Labs Technical Journal, 2013, 18(3): 22–38

[2] Iwai Y, Hasegawa H, Sato K. A large-scale photonic node architecture that utilizes interconnected OXC subsystems. Optics Express, 2013, 21(1): 478–487

[3] Sato K, Hasegawa H. Optical networking technologies that will create future bandwidth-abundant networks. Journal of Optical Communications and Networking, 2009, 1(2): A81–A93

[4] Le H C, Hasegawa H, Sato K. Performance evaluation of large-scale multi-stage hetero-granular optical cross-connects. Optics Express, 2014, 22(3): 3157–3168

[5] Li Z, Claver H. Compact wavelength-selective optical switch based on digital optical phase conjugation. Optics Letters, 2013, 38(22): 4789–4792

[6] Rohit A, Bolk J, Leijtens X J M, Williams K A. Monolithic nanosecond-reconfigurable 4_4 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2012, 30 (17): 2913–2921

[7] Stabile R, Rohit A, Williams K A. Monolithically integrated 8_8 space and wavelength selective cross-connect. IEEE Journal of Lightwave Technology, 2014, 32(2): 201–207

[8] Tran V, Zhong W D, Tucker R S, Song K. Reconfigurable multichannel optical add–drop multiplexers incorporating eight-port optical circulators and fibre Bragg gratings. IEEE Photonics Technology Letters, 2001, 13(13): 1100–1102

[9] Han Y T, Shin J U, Park S H, Seo J K, Lee H J, HwangWY, Park H H, Baek Y. 2_2 polymer thermo-optic digital optical switch using total-internal-reflection in bend-free waveguides. IEEE Photonics Technology Letters, 2012, 24(19): 1757–1760

[10] Claes T, Bogaerts W, Bienstman P. Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source. Optics Letters, 2011, 36(17): 3320–3322

[11] Han Y, Shin J, Park S, Han S, Baek Y, Lee C, Noh Y, Lee H, Park H. Fabrication of 10-channel polymer thermo-optic digital optical switch array. IEEE Photonics Technology Letters, 2009, 21(20): 1556–1558

[12] Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345

[13] Fang Q, Song J, Zhang G. Monolithic integration of a multiplexer/ demultiplexer with a thermo-optic VOA array on an SOI platform. IEEE Photonics Technology Letters, 2009, 21(5): 319–321

[14] Yeniay A, Gao R. True time delay photonic circuit based on perfluorpolymer waveguides. IEEE Photonics Technology Letters, 2010, 22(21): 1565–1567

[15] Oguma M, Kamei S, Kitoh T, Hashimoto T, Sakamaki Y, Itoh M, Takahashi H. Wide passband tandem MZI-synchronized AWG empolying mode converter and multimode waveguide. IEICE Electronics Express, 2010, 7(11): 823–826

[16] Segawa T, Matsuo S, Kakitsuka T, Shibata Y, Sato T, Kawaguchi Y, Kondo Y, Takahashi R. All-optical wavelength-routing switch with monolithically integrated filter-free tunable wavelength converters and an AWG. Optics Express, 2010, 18(5): 4340–4345

[17] Dai D, Bauter. J, Bowers J E. Passive technologies for future largescale photonic integrated circuits on silicon: polarization handling, light non-re1ciprocity and loss reduction. Light, Science & Applications, 2012, 1: e1

[18] Bontempi F, Faralli S, Contestabile G. An InP monolithically integrated unicast and multicast wavelength converter. IEEE Photonics Technology Letters, 2013, 25(22): 2178–2181

[19] Andriolli N, Faralli S, Bontempi F, Contestabile G. A wavelengthpreserving photonic integrated regenerator for NRZ and RZ signals. Optics Express, 2013, 21(18): 20649–20655

[20] Andriolli, N, Faralli, S, and Leijtens, XJM. Monolithically integrated all-optical regenerator for constant envelope WDM signals. IEEE Journal of Lightwave Technology, 2013 31(2): 322– 327

[21] Francesca B, Sergio P, Nicola A. Multifunctional current-controlled InP photonic integrated delay interferometer. IEEE Journal of Quantum Electronics, 2012, 48(11): 1453–1461

[22] Nicholes S C, Masanovic ML, Jevremovic B, Lively E, Coldren L A. An 8_8 InP monolithic tunable optical router (motor) packet forwarding chip. IEEE Journal of Lightwave Technology, 2010, 28: 641–650

[23] Welch D F, Kish F A, Melle S, Nagarajan R, Kato M, Joyner C H, Pleumeekers J L, Schneider R P, Back J, Dentai A G, Dominic V G, Evans P W, Kauffman M, Lambert D J H, Hurtt S K, Mathur A, Mitchell M L, Missey M, Murthy S, Nilsson A C, Salvatore R A, Van Leeuwen M F, Webjorn J, Ziari M, Grubb S G, Perkins D, Reffle M, Mehuys D G. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 22– 31

[24] Wang J, Kroh M, Richter T, Theurer A, Matiss A, Zawadzki C, Zhang Z, Schubert C, Steffan A, Grote N, Keil N, Kroh M, Richter T. Hybrid-integrated polarization diverse coherent receiver based on polymer PLC. IEEE Photonics Technology Letters, 2012, 24(29): 1718–1721

[25] Bamiedakis N, Beals J, Penty R V, White I H, DeGroot J V, Clapp T V. Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE Journal of Quantum Electronics, 2009, 45(4): 415–424

[26] Gorman T, Haxha S, Ju J J. Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section. IEEE Journal of Lightwave Technology, 2009, 27(1): 68–76

[27] Chen C, Zhang F, Zhang D. UV curable electro-optic polymer switch based on direct photo definition technique. IEEE Journal of Quantum Electronics, 2011, 47(7): 959–964

[28] Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chemical Reviews, 2010, 110(1): 25–55

[29] Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110

[30] Chen C, Cui Z, Zhang D. Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials. IEEE Journal of Quantum Electronics, 2012, 48(1): 61–66

[31] Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits. Optics Express, 2014, 22(17): 19895–19911

[32] Chen C, Niu X, Han C, Shi Z, Wang X, Sun X, Wang F, Cui Z, Zhang D. Monolithic multi-functional integration of ROADM modules based on polymer photonic lightwave circuit. Optics Express, 2014, 22(9): 10716–10727

[33] Oguchi K. New notations based on the wavelength transfer matrix for functional analysis of wavelength circuits and new WDM networks using AWG-based star coupler with asymmetric characteristics. IEEE Journal of Lightwave Technology, 1996, 14(6): 1255–1263

[34] Hu G, Cui Y, Yun B, Lu C, Wang Z. A polymeric optical switch array based on arrayed waveguide grating structure. Optics Communications, 2007, 279(1): 79–82

[35] Wan Y, Fei X, Shi Z, Hu J, Zhang X, Zhao L, Chen C, Cui Z, Zhang D. Highly fluorinated low-molecular-weight photoresists for optical waveguides. Journal of Polymer Science Part A, Polymer Chemistry, 2011, 49(3): 762–769

[36] Chen C, Han C, Wang L, Zhang H, Sun X, Wang F, Zhang D. 650 nm all-polymer Thermo-optic waveguide switch arrays based on novel organic-inorganic grafting PMMA materials. IEEE Journal of Quantum Electronics, 2013, 49(5): 61–66

[37] Kawano K. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schr dinger Equations. New York: Wiley, 2001

[38] Hassan K, Weeber J C, Markey L, Dereux A, Pitilakis A, Tsilipakos O, Kriezis E E. Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides. Applied Physics Letters, 2011, 99(24): 241110

Changming CHEN, Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Frontiers of Optoelectronics, 2016, 9(3): 428. Changming CHEN, Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Frontiers of Optoelectronics, 2016, 9(3): 428.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!