光学学报, 2018, 38 (7): 0714002, 网络出版: 2018-09-05   

环境温度变化不敏感的光学腔热屏蔽层设计 下载: 1127次封面文章

Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations
作者单位
华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
引用该论文

李雪艳, 蒋燕义, 姚远, 毕志毅, 马龙生. 环境温度变化不敏感的光学腔热屏蔽层设计[J]. 光学学报, 2018, 38(7): 0714002.

Xueyan Li, Yanyi Jiang, Yuan Yao, Zhiyi Bi, Longsheng Ma. Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations[J]. Acta Optica Sinica, 2018, 38(7): 0714002.

参考文献

[1] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

    Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

[2] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.

    Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.

[3] Schiller S, Tino G M, Gill P, et al. Einstein Gravity Explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 2009, 23(2): 573-610.

    Schiller S, Tino G M, Gill P, et al. Einstein Gravity Explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 2009, 23(2): 573-610.

[4] Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

    Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

[5] Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

    Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

[6] Chen J B. Active optical clock[J]. Chinese Science Bulletin, 2009, 54(3): 348-352.

    Chen J B. Active optical clock[J]. Chinese Science Bulletin, 2009, 54(3): 348-352.

[7] Norcia M A, Winchester M N. Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2016, 2(10): e1601231.

    Norcia M A, Winchester M N. Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2016, 2(10): e1601231.

[8] Thorpe M J, Rippe L, Fortier T M, et al. Frequency stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 2011, 5(11): 688-693.

    Thorpe M J, Rippe L, Fortier T M, et al. Frequency stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 2011, 5(11): 688-693.

[9] Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu 3+∶Y2SiO5[J]. Physical Review Letters, 2015, 114(25): 253902.

    Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu 3+∶Y2SiO5[J]. Physical Review Letters, 2015, 114(25): 253902.

[10] Häfner S, Falke S, Grebing C, et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 2015, 40(9): 2112-2115.

    Häfner S, Falke S, Grebing C, et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 2015, 40(9): 2112-2115.

[11] Nicholson T L, Martin M J, Williams J R, et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 2012, 109(23): 230801.

    Nicholson T L, Martin M J, Williams J R, et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 2012, 109(23): 230801.

[12] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10 -16 -level laser stabilization [J]. Nature Photonics, 2011, 5(3): 158-161.

    Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10 -16 -level laser stabilization [J]. Nature Photonics, 2011, 5(3): 158-161.

[13] Chen H Q, Jiang Y Y, Fang S, et al. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz[J]. Journal of the Optical Society of America B, 2013, 30(6): 1546-1550.

    Chen H Q, Jiang Y Y, Fang S, et al. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz[J]. Journal of the Optical Society of America B, 2013, 30(6): 1546-1550.

[14] Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 053829.

    Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 053829.

[15] Webster S A, Oxborrow M, Pugla S, et al. Thermal-noise-limited optical cavity[J]. Physical Review A, 2008, 77(3): 033847.

    Webster S A, Oxborrow M, Pugla S, et al. Thermal-noise-limited optical cavity[J]. Physical Review A, 2008, 77(3): 033847.

[16] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602.

    Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 2004, 93(25): 250602.

[17] Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub 10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

    Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub 10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

[18] Zhang W, Robinson J M, Sonderhouse L, et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K[J]. Physical Review Letters, 2017, 119(24): 243601.

    Zhang W, Robinson J M, Sonderhouse L, et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K[J]. Physical Review Letters, 2017, 119(24): 243601.

[19] MuellerG, McNamara P, Thorpe I, et al. Laser frequency stabilization for LISA: NASA/TM-2005-212794[R].2005.

    MuellerG, McNamara P, Thorpe I, et al. Laser frequency stabilization for LISA: NASA/TM-2005-212794[R].2005.

[20] 王兴昌, 李少康, 李刚, 等. 高热稳定性高精细度光学法布里-珀罗腔系统[J]. 光学学报, 2017, 37(1): 0112004.

    王兴昌, 李少康, 李刚, 等. 高热稳定性高精细度光学法布里-珀罗腔系统[J]. 光学学报, 2017, 37(1): 0112004.

    Wang X C, Li S K, Li G, et al. Optical Fabry-Pérot cavity system with high thermal stability and high finesse[J]. Acta Optica Sinica, 2017, 37(1): 0112004.

    Wang X C, Li S K, Li G, et al. Optical Fabry-Pérot cavity system with high thermal stability and high finesse[J]. Acta Optica Sinica, 2017, 37(1): 0112004.

[21] 孙旭涛, 刘继桥, 周军, 等. 激光稳频的共焦法布里-珀罗干涉仪[J]. 中国激光, 2008, 35(7): 1005-1008.

    孙旭涛, 刘继桥, 周军, 等. 激光稳频的共焦法布里-珀罗干涉仪[J]. 中国激光, 2008, 35(7): 1005-1008.

    Sun X T, Liu J Q, Zhou J, et al. Confocal Fabry-Pérot interferometer for frequency stabilization of laser[J]. Chinses Jounal of Lasers, 2008, 35(7): 1005-1008.

    Sun X T, Liu J Q, Zhou J, et al. Confocal Fabry-Pérot interferometer for frequency stabilization of laser[J]. Chinses Jounal of Lasers, 2008, 35(7): 1005-1008.

[22] Dai X J, Jiang Y Y, Hang C, et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 2015, 23(4): 5134-5146.

    Dai X J, Jiang Y Y, Hang C, et al. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations[J]. Optics Express, 2015, 23(4): 5134-5146.

[23] Sanjuan J, Gürlebeck N, Braxmaier C. Mathematical model of thermal shields for long-term stability optical resonators[J]. Optics Express, 2015, 23(14): 17892-17908.

    Sanjuan J, Gürlebeck N, Braxmaier C. Mathematical model of thermal shields for long-term stability optical resonators[J]. Optics Express, 2015, 23(14): 17892-17908.

[24] Hagemann C, Grebing C, Lisdat C. et al. Ultrastable laser with average fractional frequency drift rate below 5×10 -19/s [J]. Optics Letters, 2014, 39(17): 5102-5105.

    Hagemann C, Grebing C, Lisdat C. et al. Ultrastable laser with average fractional frequency drift rate below 5×10 -19/s [J]. Optics Letters, 2014, 39(17): 5102-5105.

[25] Table of total emissivity[EB/OL]. [2018-01-15].https://www.omega.com/temperature/z/pdf/z088-089.pdf.

    Table of total emissivity[EB/OL]. [2018-01-15].https://www.omega.com/temperature/z/pdf/z088-089.pdf.

李雪艳, 蒋燕义, 姚远, 毕志毅, 马龙生. 环境温度变化不敏感的光学腔热屏蔽层设计[J]. 光学学报, 2018, 38(7): 0714002. Xueyan Li, Yanyi Jiang, Yuan Yao, Zhiyi Bi, Longsheng Ma. Design of Thermal Shield of Optical Cavities for Low Sensitivity to Environmental Temperature Fluctuations[J]. Acta Optica Sinica, 2018, 38(7): 0714002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!