Advanced Photonics, 2019, 1 (6): 066001, Published Online: Nov. 12, 2019   

Deep-learning cell imaging through Anderson localizing optical fiber Download: 854次

Author Affiliations
1 University of Central Florida, CREOL, The College of Optics and Photonics, Orlando, Florida, United States
2 Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, State Key Laboratory of Luminescence and Applications, Changchun, China
Copy Citation Text

Jian Zhao, Yangyang Sun, Hongbo Zhu, Zheyuan Zhu, Jose E. Antonio-Lopez, Rodrigo Amezcua Correa, Shuo Pang, Axel Schulzgen. Deep-learning cell imaging through Anderson localizing optical fiber[J]. Advanced Photonics, 2019, 1(6): 066001.

References

[1] F. Koenig, J. Knittel, H. Stepp. Diagnosing cancer in vivo. Science, 2001, 292(5520): 1401-1403.

[2] V. Szabo, et al.. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron, 2014, 84(6): 1157-1169.

[3] B. A. Flusberg, et al.. Fiber-optic fluorescence imaging. Nat. Methods, 2005, 2(12): 941-950.

[4] T. J. Muldoon, et al.. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Opt. Express, 2007, 15(25): 16413-16423.

[5] T. Cizmar, K. Dholakia. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun., 2012, 3: 1027.

[6] Y. Choi, et al.. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 2012, 109(20): 203901.

[7] I. N. Papadopoulos, et al.. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express, 2013, 4(2): 260-270.

[8] M. Hughes, T. P. Chang, G.-Z. Yang. Fiber bundle endocytoscopy. Biomed. Opt. Express, 2013, 4(12): 2781-2794.

[9] S. Ohayon, et al.. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express, 2018, 9(4): 1492-1509.

[10] Y. Chang, et al.. Compact high-resolution endomicroscopy based on fiber bundles and image stitching. Opt. Lett., 2018, 43(17): 4168-4171.

[11] K. L. Reichenbach, C. Xu. Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express, 2007, 15(5): 2151-2165.

[12] X. Chen, K. L. Reichenbach, C. Xu. Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Opt. Express, 2008, 16(26): 21598-21607.

[13] J. M. Stone, et al.. Low index contrast imaging fibers. Opt. Lett., 2017, 42(8): 1484-1487.

[14] D. Kim, et al.. Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle. Opt. Lett., 2014, 39(7): 1921-1924.

[15] U. Weiss, O. Katz. Two-photon lensless micro-endoscopy with in-situ wavefront correction. Opt. Express, 2018, 26(22): 28808-28817.

[16] V. Tsvirkun, et al.. Widefield lensless endoscopy with a multicore fiber. Opt. Lett., 2016, 41(20): 4771-4774.

[17] E. R.Andresenet al., Ultrathin Endoscopes Based on Multicore Fibers and Adaptive Optics: A Status Review and Perspectives, SPIE Press, Bellingham, Washington (2016).

[18] T. Čižmár, K. Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express, 2011, 19(20): 18871-18884.

[19] S. Turtaev, et al.. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl., 2018, 7(1): 92.

[20] S. M. Popoff, et al.. Controlling light through optical disordered media: transmission matrix approach. New J. Phys., 2011, 13(12): 123021.

[21] S. M. Popoff, et al.. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 2010, 104(10): 100601.

[22] H. Yu, et al.. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl Phys., 2015, 15(5): 632-641.

[23] Y. Rivenson, et al.. Deep learning microscopy. Optica, 2017, 4(11): 1437-1443.

[24] S. Li, et al.. Imaging through glass diffusers using densely connected convolutional networks. Optica, 2018, 5(7): 803-813.

[25] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 2018, 5(10): 1181-1190.

[26] Y. Rivenson, et al.. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng., 2019, 3: 466-477.

[27] Y. Xue, et al.. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 2019, 6(5): 618-629.

[28] H. Pinkard, et al.. Deep learning for single-shot autofocus microscopy. Optica, 2019, 6(6): 794-797.

[29] J. Zhao, et al.. A path to high-quality imaging through disordered optical fibers: a review. Appl. Opt., 2019, 58(13): D50-D60.

[30] M. T. McCann, K. H. Jin, M. Unser. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process. Mag., 2017, 34(6): 85-95.

[31] S. Karbasi, et al.. Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers. Opt. Express, 2012, 20(17): 18692-18706.

[32] J. Zhao, et al.. Deep learning imaging through fully-flexible glass-air disordered fiber. ACS Photonics, 2018, 5(10): 3930-3935.

[33] B. Rahmani, et al.. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 2018, 7(1): 69.

[34] N. Borhani, et al.. Learning to see through multimode fibers. Optica, 2018, 5(8): 960-966.

[35] P. Wang, J. Di. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet. Appl. Opt., 2018, 57(28): 8258-8263.

[36] U. Kürüm, et al.. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express, 2019, 27(15): 20965-20979.

[37] J. Shao, et al.. Fiber bundle image restoration using deep learning. Opt. Lett., 2019, 44(5): 1080-1083.

[38] G. Ruocco, et al.. Disorder-induced single-mode transmission. Nat. Commun., 2017, 8: 14571.

[39] J. Zhao, et al.. Image transport through meter-long randomly disordered silica-air optical fiber. Sci. Rep., 2018, 8(1): 3065.

[40] A. Mafi. Transverse Anderson localization of light: a tutorial. Adv. Opt. Photonics, 2015, 7(3): 459-515.

[41] S. Karbasi, K. W. Koch, A. Mafi. Image transport quality can be improved in disordered waveguides. Opt. Commun., 2013, 311: 72-76.

[42] B. Abaie, et al.. Disorder-induced high-quality wavefront in an Anderson localizing optical fiber. Optica, 2018, 5(8): 984-987.

[43] S. Karbasi, K. W. Koch, A. Mafi. Multiple-beam propagation in an Anderson localized optical fiber. Opt. Express, 2013, 21(1): 305-313.

[44] W. Schirmacher, et al.. What is the right theory for Anderson localization of light? An experimental test. Phys. Rev. Lett., 2018, 120(6): 067401.

[45] C. J. R. Sheppard. Defocused transfer function for a partially coherent microscope and application to phase retrieval. J. Opt. Soc. Am. A, 2004, 21(5): 828-831.

[46] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 2015, 9(8): 529-535.

[47] A. Mafi, et al.. Disordered Anderson localization optical fibers for image transport—a review. J. Lightwave Technol., 2019.

[48] S. Karbasi, K. W. Koch, A. Mafi. Modal perspective on the transverse Anderson localization of light in disordered optical lattices. J. Opt. Soc. Am. B, 2013, 30(6): 1452-1461.

Jian Zhao, Yangyang Sun, Hongbo Zhu, Zheyuan Zhu, Jose E. Antonio-Lopez, Rodrigo Amezcua Correa, Shuo Pang, Axel Schulzgen. Deep-learning cell imaging through Anderson localizing optical fiber[J]. Advanced Photonics, 2019, 1(6): 066001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!