激光与光电子学进展, 2021, 58 (3): 0316001, 网络出版: 2021-03-12   

基于二氧化钒的太赫兹超材料动态可调宽带吸收器 下载: 760次

Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide
作者单位
云南大学信息学院,云南 昆明 650500
摘要
在硅平面上设计了一种基于二氧化钒(VO2)超材料的可调谐太赫兹(THz)宽带吸收器,该吸收器由VO2谐振层和被SiO2介质隔开的金属反射层组成。数值仿真结果表明,具有高电导率(30000 S/m)的VO2表现为金属相,其吸收率大于90%时吸收带宽达到了2 THz,并且分别在4.5 THz和5.8 THz处实现了吸收率为99.3%和99.6%的完美吸收。具有低电导率(100 S/m)的VO2则表现为绝缘相,其在相应的宽频吸收带内的峰值吸收率仅为8%。因此,通过改变吸收器结构中VO2材料的电导率,可以实现宽频带内吸收率的动态调谐以及吸收和反射功能的切换。此外,由于结构的对称性,所提出的吸收器在垂直入射条件下具有偏振不敏感特性,并且在大入射角度范围内保持着良好的吸收性能。
Abstract
In this paper, a vanadium dioxide (VO2) based tunable broadband terahertz (THz) absorber is designed on the silicon plane, which is composed of a VO2 resonator and a metal layer, separated by a thin silicon dioxide (SiO2) dielectric layer. Numerical simulation results show that VO2 with high conductivity (30000 S/m) is at its metal phase, and when its absorptivity is greater than 90%, the 2.0 THz absorption bandwidth can be obtained. In addition, the perfect absorption is realized with absorptivity of 99.3% and 99.6% at 4.5THz and 5.8THz, respectively. In contrast, VO2 with low conductivity (100 S/m) is at its insulation phase, and the peak absorptivity in the corresponding broad absorption band is only 8%. Therefore, by altering the conductivity of VO2 in the absorber, one can switch between absorption and reflection and realize the dynamic tuning of absorptivity in a broad frequency band. In addition, the proposed absorber is polarization-insensitive under vertical incidence due to its structural symmetry. Moreover, the absorber maintains an excellent absorption performance over a wide incident angle range.

龚江, 宗容, 李辉, 段韬. 基于二氧化钒的太赫兹超材料动态可调宽带吸收器[J]. 激光与光电子学进展, 2021, 58(3): 0316001. Gong Jiang, Zong Rong, Li Hui, Duan Tao. Dynamically Tunable Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0316001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!