光学学报, 2018, 38 (1): 0106004, 网络出版: 2018-08-31   

基于EKF和LKF级联的频偏和相位估计联合方案 下载: 988次

A Joint Frequency Offset and Phase Estimation Scheme Based on Cascaded EKF and LKF
作者单位
哈尔滨工业大学深圳研究生院, 广东 深圳 518055
引用该论文

侯冰洁, 杨彦甫, 向前, 张群, 姚勇. 基于EKF和LKF级联的频偏和相位估计联合方案[J]. 光学学报, 2018, 38(1): 0106004.

Bingjie Hou, Yanfu Yang, Qian Xiang, Qun Zhang, Yong Yao. A Joint Frequency Offset and Phase Estimation Scheme Based on Cascaded EKF and LKF[J]. Acta Optica Sinica, 2018, 38(1): 0106004.

参考文献

[1] Lau A P T, Barros D J F, Ip E, et al. . Coherent detection in optical fiber systems[J]. Optics Express, 2008, 16(2): 753-791.

    Lau A P T, Barros D J F, Ip E, et al. . Coherent detection in optical fiber systems[J]. Optics Express, 2008, 16(2): 753-791.

    Lau A P T, Barros D J F, Ip E, et al. . Coherent detection in optical fiber systems[J]. Optics Express, 2008, 16(2): 753-791.

[2] Ip E M, Kahn J M. Fiber impairment compensation using coherent detection and digital signal processing[J]. Journal of Lightwave Technology, 2010, 28(4): 502-519.

    Ip E M, Kahn J M. Fiber impairment compensation using coherent detection and digital signal processing[J]. Journal of Lightwave Technology, 2010, 28(4): 502-519.

    Ip E M, Kahn J M. Fiber impairment compensation using coherent detection and digital signal processing[J]. Journal of Lightwave Technology, 2010, 28(4): 502-519.

[3] 王萍, 陈健, 由骁迪, 等. 光相干QAM信号的弹性DAML相位估计[J]. 光学学报, 2016, 36(8): 0806007.

    王萍, 陈健, 由骁迪, 等. 光相干QAM信号的弹性DAML相位估计[J]. 光学学报, 2016, 36(8): 0806007.

    王萍, 陈健, 由骁迪, 等. 光相干QAM信号的弹性DAML相位估计[J]. 光学学报, 2016, 36(8): 0806007.

    Wang P, Chen J, You X D, et al. Flexible decision-aided maximum likelihood phase estimation for optical coherent QAM signals[J]. Acta Optica Sinica, 2016, 36(8): 0806007.

    Wang P, Chen J, You X D, et al. Flexible decision-aided maximum likelihood phase estimation for optical coherent QAM signals[J]. Acta Optica Sinica, 2016, 36(8): 0806007.

    Wang P, Chen J, You X D, et al. Flexible decision-aided maximum likelihood phase estimation for optical coherent QAM signals[J]. Acta Optica Sinica, 2016, 36(8): 0806007.

[4] SelmiM, JaouenY, CiblatP. Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems[C]. European Conference on Optical Communication, 2009: 10918813.

    SelmiM, JaouenY, CiblatP. Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems[C]. European Conference on Optical Communication, 2009: 10918813.

    SelmiM, JaouenY, CiblatP. Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems[C]. European Conference on Optical Communication, 2009: 10918813.

[5] NakagawaT, IshiharaK, KobayashiT, et al. Wide-range and fast-tracking frequency offset estimator for optical coherent receivers[C]. European Conference and Exhibition on Optical Communication, 2010: 11636831.

    NakagawaT, IshiharaK, KobayashiT, et al. Wide-range and fast-tracking frequency offset estimator for optical coherent receivers[C]. European Conference and Exhibition on Optical Communication, 2010: 11636831.

    NakagawaT, IshiharaK, KobayashiT, et al. Wide-range and fast-tracking frequency offset estimator for optical coherent receivers[C]. European Conference and Exhibition on Optical Communication, 2010: 11636831.

[6] Zhou X, Chen X, Long K. Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence[J]. IEEE Photonics Technology Letters, 2011, 24(1): 82-84.

    Zhou X, Chen X, Long K. Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence[J]. IEEE Photonics Technology Letters, 2011, 24(1): 82-84.

    Zhou X, Chen X, Long K. Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence[J]. IEEE Photonics Technology Letters, 2011, 24(1): 82-84.

[7] Viterbi A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory, 1983, 29(4): 543-551.

    Viterbi A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory, 1983, 29(4): 543-551.

    Viterbi A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory, 1983, 29(4): 543-551.

[8] Noé R, Hoffmann S, Pfau T. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations[J]. Journal of Lightwave Technology, 2009, 27(8): 989-999.

    Noé R, Hoffmann S, Pfau T. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations[J]. Journal of Lightwave Technology, 2009, 27(8): 989-999.

    Noé R, Hoffmann S, Pfau T. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations[J]. Journal of Lightwave Technology, 2009, 27(8): 989-999.

[9] Khalil MI, Adib M M H, Chowdhury A M, et al. Least radial distance based carrier phase recovery for 16-QAM coherent optical systems[C]. Optoelectronics & Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching, 2013: 13768817.

    Khalil MI, Adib M M H, Chowdhury A M, et al. Least radial distance based carrier phase recovery for 16-QAM coherent optical systems[C]. Optoelectronics & Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching, 2013: 13768817.

    Khalil MI, Adib M M H, Chowdhury A M, et al. Least radial distance based carrier phase recovery for 16-QAM coherent optical systems[C]. Optoelectronics & Communications Conference Held Jointly with 2013 International Conference on Photonics in Switching, 2013: 13768817.

[10] Shu N, Inoue T. Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter[J]. Optics Express, 2014, 22(13): 15376-15387.

    Shu N, Inoue T. Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter[J]. Optics Express, 2014, 22(13): 15376-15387.

    Shu N, Inoue T. Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter[J]. Optics Express, 2014, 22(13): 15376-15387.

[11] Marshall T, Szafraniec B, Nebendahl B. Kalman filter carrier and polarization-state tracking[J]. Optics Letters, 2010, 35(13): 2203-2205.

    Marshall T, Szafraniec B, Nebendahl B. Kalman filter carrier and polarization-state tracking[J]. Optics Letters, 2010, 35(13): 2203-2205.

    Marshall T, Szafraniec B, Nebendahl B. Kalman filter carrier and polarization-state tracking[J]. Optics Letters, 2010, 35(13): 2203-2205.

[12] 曹国亮, 杨彦甫, 王非, 等. 基于扩展卡尔曼的PDM-16QAM偏振态和载波相位快速跟踪[J]. 光学学报, 2014, 34(12): 1206005.

    曹国亮, 杨彦甫, 王非, 等. 基于扩展卡尔曼的PDM-16QAM偏振态和载波相位快速跟踪[J]. 光学学报, 2014, 34(12): 1206005.

    曹国亮, 杨彦甫, 王非, 等. 基于扩展卡尔曼的PDM-16QAM偏振态和载波相位快速跟踪[J]. 光学学报, 2014, 34(12): 1206005.

    Cao G L, Yang Y F, Wang F, et al. Extended Kalman based polarization and carrier phase quickly tracking for PDM-16QAM[J]. Acta Optica Sinica, 2014, 34(12): 1206005.

    Cao G L, Yang Y F, Wang F, et al. Extended Kalman based polarization and carrier phase quickly tracking for PDM-16QAM[J]. Acta Optica Sinica, 2014, 34(12): 1206005.

    Cao G L, Yang Y F, Wang F, et al. Extended Kalman based polarization and carrier phase quickly tracking for PDM-16QAM[J]. Acta Optica Sinica, 2014, 34(12): 1206005.

[13] Proakis JG, SalehiM. Digital Communications[M]. 5th ed. Columbus: McGraw-Hill Science/Engineering/Math, 2008.

    Proakis JG, SalehiM. Digital Communications[M]. 5th ed. Columbus: McGraw-Hill Science/Engineering/Math, 2008.

    Proakis JG, SalehiM. Digital Communications[M]. 5th ed. Columbus: McGraw-Hill Science/Engineering/Math, 2008.

[14] Qiu M, Zhuge Q, Xu X, et al. Simple and efficient frequency offset tracking and carrier phase recovery algorithms in single carrier transmission systems[J]. Optics Express, 2013, 21(7): 8157-8165.

    Qiu M, Zhuge Q, Xu X, et al. Simple and efficient frequency offset tracking and carrier phase recovery algorithms in single carrier transmission systems[J]. Optics Express, 2013, 21(7): 8157-8165.

    Qiu M, Zhuge Q, Xu X, et al. Simple and efficient frequency offset tracking and carrier phase recovery algorithms in single carrier transmission systems[J]. Optics Express, 2013, 21(7): 8157-8165.

[15] JainA, LandaisP, Krishnamurthy PK, et al. Extended Kalman filter for estimation of phase noises and frequency offset in 400G PM-16-QAM systems[C]. 13th International Conference on Fiber Optics and Photonics, 2016, Tu3A:Tu3A. 3.

    JainA, LandaisP, Krishnamurthy PK, et al. Extended Kalman filter for estimation of phase noises and frequency offset in 400G PM-16-QAM systems[C]. 13th International Conference on Fiber Optics and Photonics, 2016, Tu3A:Tu3A. 3.

    JainA, LandaisP, Krishnamurthy PK, et al. Extended Kalman filter for estimation of phase noises and frequency offset in 400G PM-16-QAM systems[C]. 13th International Conference on Fiber Optics and Photonics, 2016, Tu3A:Tu3A. 3.

侯冰洁, 杨彦甫, 向前, 张群, 姚勇. 基于EKF和LKF级联的频偏和相位估计联合方案[J]. 光学学报, 2018, 38(1): 0106004. Bingjie Hou, Yanfu Yang, Qian Xiang, Qun Zhang, Yong Yao. A Joint Frequency Offset and Phase Estimation Scheme Based on Cascaded EKF and LKF[J]. Acta Optica Sinica, 2018, 38(1): 0106004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!