激光与光电子学进展, 2020, 57 (21): 210002, 网络出版: 2020-10-27   

布里渊光时域反射仪分布式光纤传感研究进展 下载: 1950次

Distributed Fiber Sensor Based on Brillouin Optical Time Domain Reflection Technique
作者单位
华中科技大学武汉光电国家研究中心, 湖北 武汉 430074
引用该论文

包宇奔, 孙军强, 黄强. 布里渊光时域反射仪分布式光纤传感研究进展[J]. 激光与光电子学进展, 2020, 57(21): 210002.

Bao Yuben, Sun Junqiang, Huang Qiang. Distributed Fiber Sensor Based on Brillouin Optical Time Domain Reflection Technique[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210002.

参考文献

[1] Kurashima T, Horiguchi T, Izumita H, et al. Brillouin optical-fiber time domain reflectometry[J]. IEICE Transactions on Communications, 1993, 76(4): 382-390.

[2] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 1990, 15(18): 1038-1040.

[3] Garus D, Krebber K, Schliep F, et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.

[4] Minardo A, Bernini R, Ruiz-Lombera R, et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 2016, 24(26): 29994-30001.

[5] Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique: proposal, experiment and simulation[J]. IEICE Transactions on Electronics, 2000, 84(3): 405-412.

[6] Mizuno Y, Zou W W, He Z Y, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.

[7] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

[8] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 1972, 21(11): 539-541.

[9] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 1972, 11(11): 2489-2494.

[10] Culverhouse D, Farahi F, Pannell C N, et al. Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors[J]. Electronics Letters, 1989, 25(14): 913-915.

[11] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers[J]. IEEE Photonics Technology Letters, 1989, 1(5): 107-108.

[12] Kee H H, Lees G P, Newson T P. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering[J]. Optics Letters, 2000, 25(10): 695-697.

[13] Lees G P, Wait P C, Cole M J, et al. Advances in optical fiber distributed temperature sensing using the Landau-Placzek ratio[J]. IEEE Photonics Technology Letters, 1998, 10(1): 126-128.

[14] Wait P C, Newson T P. Landau Placzek ratio applied to distributed fibre sensing[J]. Optics Communications, 1996, 122(4/5/6): 141-146.

[15] Parker T R, Farhadiroushan M, Handerek V A, et al. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter[J]. IEEE Photonics Technology Letters, 1997, 9(7): 979-981.

[16] Li Y Q, Li X J, An Q, et al. Detrimental effect elimination of laser frequency instability in Brillouin optical time domain reflectometer by using self-heterodyne detection[J]. Sensors, 2017, 17(3): 634.

[17] Shimizu K, Horiguchi T, Koyamada Y, et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers[J]. Journal of Lightwave Technology, 1994, 12(5): 730-736.

[18] Izumita H, Sato T, Tateda M, et al. Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator[J]. IEEE Photonics Technology Letters, 1996, 8(12): 1674-1676.

[19] Lecœuche V. 16 km distributed temperature sensor based on coherent detection of spontaneous Brillouin scattering using a Brillouin laser[J]. Proceedings of SPIE, 1999, 3746: 374643.

[20] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2001, 12(7): 834-842.

[21] Chang T Y, Li D Y, Koscica T E, et al. Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering[J]. Applied Optics, 2008, 47(33): 6202-6206.

[22] Bao X, Brown A, Demerchant M, et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses[J]. Optics Letters, 1999, 24(8): 510-512.

[23] Koyamada Y, Sakairi Y, Takeuchi N, et al. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry[J]. IEEE Photonics Technology Letters, 2007, 19(23): 1910-1912.

[24] Nishiguchi K, Li C H, Guzik A, et al. Synthetic spectrum approach for Brillouin optical time-domain reflectometry[J]. Sensors, 2014, 14(3): 4731-4754.

[25] Shibata R, Kasahara H, Elias L P, et al. Improving performance of phase shift pulse BOTDR[J]. IEICE Electronics Express, 2017, 14(11): 20170267.

[26] Zan M SD, MasuiY, HoriguchiT. Differential cross spectrum technique for improving the spatial resolution of BOTDR sensor[C]∥2018 IEEE 7th International Conference on Photonics (ICP), April 9-11, 2018, Kuah, Malaysia.New York: IEEE Press, 2018: 1- 3.

[27] Li Q Y, Gan J L, Wu Y Q, et al. High spatial resolution BOTDR based on differential Brillouin spectrum technique[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1493-1496.

[28] Yu Z H, Zhang M Y, Dai H L, et al. Distributed optical fiber sensing with Brillouin optical time domain reflectometry based on differential pulse pair[J]. Optics & Laser Technology, 2018, 105: 89-93.

[29] Wang F, Zhan W W, Zhang X P, et al. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 2013, 31(23): 3663-3667.

[30] Yu Y, Luo L, Li B, et al. Quadratic time-frequency transforms-based Brillouin optical time-domain reflectometry[J]. IEEE Sensors Journal, 2017, 17(20): 6622-6626.

[31] Zhang Y J, Li D, Fu X H, et al. A pluse subdivision superposition method for improving the spatial resolution in BOTDR system[J]. Optik, 2017, 140: 523-527.

[32] Wait P C, De Souza K, Newson T P. A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors[J]. Optics Communications, 1997, 144(1/2/3): 17-23.

[33] Hao Y Q, Ye Q, Pan Z Q, et al. Influence of laser linewidth on performance of Brillouin optical time domain reflectometry[J]. Chinese Physics B, 2013, 22(7): 074214.

[34] Bai Q, Yan M, Xue B, et al. The influence of laser linewidth on the Brillouin shift frequency accuracy of BOTDR[J]. Applied Sciences, 2018, 9(1): 58.

[35] de Souza K. Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering[J]. Measurement Science and Technology, 2006, 17(5): 1065-1069.

[36] Li C L, Lu Y G, Zhang X P, et al. SNR enhancement in Brillouin optical time domain reflectometer using multi-wavelength coherent detection[J]. Electronics Letters, 2012, 48(18): 1139-1141.

[37] Lalam N, Ng W P, Dai X, et al. Performance improvement of BOTDR system using wavelength diversity technique[J]. Proceedings of SPIE, 2017, 1032: 1032366.

[38] Lalam N, Ng W P, Dai X, et al. Performance improvement of Brillouin ring laser based BOTDR system employing a wavelength diversity technique[J]. Journal of Lightwave Technology, 2018, 36(4): 1084-1090.

[39] Lu Y G, Yao Y G, Zhao X D, et al. Influence of non-perfect extinction ratio of electro-optic modulator on signal-to-noise ratio of BOTDR[J]. Optics Communications, 2013, 297: 48-54.

[40] Zhang Y X, Wu X L, Ying Z F, et al. Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator[J]. Electronics Letters, 2014, 50(14): 1014-1016.

[41] Wang F, Li C L, Zhao X D, et al. Using a Mach-Zehnder-interference-based passive configuration to eliminate the polarization noise in Brillouin optical time domain reflectometry[J]. Applied Optics, 2012, 51(2): 176-180.

[42] Geng J H, Staines S, Wang Z L, et al. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1813-1815.

[43] Geng J H, Staines S, Blake M, et al. Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering[J]. Applied Optics, 2007, 46(23): 5928-5932.

[44] Hao Y Q, Ye Q, Pan Z Q, et al. Design of wide-band frequency shift technology by using compact Brillouin fiber laser for Brillouin optical time domain reflectometry sensing system[J]. IEEE Photonics Journal, 2012, 4(5): 1686-1692.

[45] Song M P, Zhao B, Zhang X M. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception[J]. Chinese Optics Letters, 2005, 3(5): 271-274.

[46] Cao Y L, Ye Q, Pan Z Q, et al. Mitigation of polarization fading in BOTDR sensors by using optical pulses with orthogonal polarizations[J]. Proceedings of SPIE, 2014, 9157: 915764.

[47] Xia L, Hu J H, Zhao Q Y, et al. A distributed Brillouin temperature sensor using a single-photon detector[J]. IEEE Sensors Journal, 2016, 16(7): 2180-2185.

[48] Xia H Y, Shangguan M J, Shentu G L, et al. Brillouin optical time-domain reflectometry using up-conversion single-photon detector[J]. Optics Communications, 2016, 381: 37-42.

[49] Cho Y T, Alahbabi M, Gunning M J, et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 2003, 28(18): 1651-1653.

[50] Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification[J]. Journal of the Optical Society of America B, 2005, 22(6): 1321-1324.

[51] Alahbabi M N, Cho Y T, Newson T P. Long-range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous Brillouin scattering with in-line Raman amplification[J]. Measurement Science and Technology, 2006, 17(5): 1082-1090.

[52] Song M P, Xia Q L, Feng K B, et al. 100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification[J]. Optical and Quantum Electronics, 2015, 48(1): 1-10.

[53] Soto M A, Bolognini G, Di Pasquale F. Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors[J]. Optics Express, 2008, 16(23): 19097-19111.

[54] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 2009, 21(7): 450-452.

[55] FanZ, Zhang XP, Hu JH, et al.Design of fast pulse coding/decoding system for BOTDR[C]∥2012 Photonics Global Conference (PGC), December 13-16, 2012, Singapore, Singapore.New York: IEEE Press, 2012: 1- 6.

[56] Li Y Q, Li X J, Fan H B, et al. SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes[J]. Optoelectronics Letters, 2017, 13(6): 414-418.

[57] Wang F, Zhu C H, Cao C Q, et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 2017, 25(4): 3504-3513.

[58] Wan S P, Xiong Y H, He X D. The theoretical analysis and design of coding BOTDR system with APD detector[J]. IEEE Sensors Journal, 2014, 14(8): 2626-2632.

[59] Yao Y G, Lu Y G, Zhang X P, et al. Reducing trade-off between spatial resolution and frequency accuracy in BOTDR using Cohen's class signal processing method[J]. IEEE Photonics Technology Letters, 2012, 24(15): 1337-1339.

[60] Zhang Y J, Li D, Fu X H, et al. An improved Levenberg-Marquardt algorithm for extracting the features of Brillouin scattering spectrum[J]. Measurement Science and Technology, 2013, 24(1): 015204.

[61] Zhang Y J, Zhao Y, Fu X H, et al. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra[J]. Optics Communications, 2016, 376: 56-66.

[62] Pradhan H S, Sahu P K. Brillouin distributed strain sensor performance improvement using FourWaRD algorithm[J]. Optik, 2016, 127(5): 2666-2669.

[63] Zheng H R, Fang Z J, Wang Z Y, et al. Brillouin frequency shift of fiber distributed sensors extracted from noisy signals by quadratic fitting[J]. Sensors, 2018, 18(2): 409.

[64] Soto M A, Thévenaz L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors[J]. Optics Express, 2013, 21(25): 31347-31366.

[65] Yu Y F, Luo L Q, Li B, et al. Frequency resolution quantification of Brillouin-distributed optical fiber sensors[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2367-2370.

[66] Huang M Y, Li W, Liu Z Y, et al. Brillouin scattering spectrum analysis based on auto-regressive spectral estimation[J]. Photonic Sensors, 2018, 8(2): 114-118.

[67] Czarske JW, ZawischaI, TünnermannA. Distributed Brillouin temperature OTDR fiber sensor using powerful all-solid-state lasers[C]∥12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia. Washington, D.C.: OSA, 1997: OThC33.

[68] Lu YG, Dou RR, Zhang XP. Wideband dectection of spontaneous Brillouin scattering spectrum in Brillouin optical time-domain reflectometry[C]∥2008 International Conference on Optical Instruments and Technology: Microelectronic and Optoelectronic Devices and Integration, February 9, 2009, Beijing, China. Washington: Society of Photo-Optical Instrumentation Engineers, 2009, 7158: 360- 366.

[69] Tu G, Zhang X P, Zhang Y X, et al. Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system[J]. Electronics Letters, 2014, 50(22): 1624-1626.

[70] Li B, Luo L, Yu Y, et al. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR[J]. IEEE Sensors Journal, 2017, 17(9): 2718-2724.

[71] Wan S P, He X D, Fang L H. Distributed Brillouin fiber sensing based on spectrum line fitting and wavelet packet denoising[J]. Optics Communications, 2012, 285(24): 4971-4976.

[72] Ding Y, Shi B, Zhang D. Data processing in BOTDR distributed strain measurement based on pattern recognition[J]. Optik, 2010, 121(24): 2234-2239.

[73] KoizumiK, KandaY, FujiiA, et al.High-speed distributed strain measurement using Brillouin optical time-domain reflectometry based-on self-delayed heterodyne detection[C]∥2015 European Conference on Optical Communication (ECOC), September 27 - October 1, 2015, Valencia, Spain.New York: IEEE Press, 2015: 1- 3.

[74] Maraval D, Gabet R, Jaouen Y, et al. Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: application to pipeline vibration monitoring[J]. Journal of Lightwave Technology, 2017, 35(16): 3296-3302.

[75] Masoudi A, Belal M, Newson T P. Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering[J]. Optics Letters, 2013, 38(17): 3312-3315.

[76] Shangguan M J, Wang C, Xia H Y, et al. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique[J]. Optics Communications, 2017, 398: 95-100.

[77] Abbasnejad M, Alizadeh B. FPGA-based implementation of a novel method for estimating the Brillouin frequency shift in BOTDA and BOTDR sensors[J]. IEEE Sensors Journal, 2018, 18(5): 2015-2022.

[78] Kee H H, Lees G P, Newson T P. Simultaneous independent distributed strain and temperature measurements over 15 km using spontaneous Brillouin scattering[J]. Proceedings of SPIE, 2000, 4074: 271-279.

[79] Bao X, Smith J, Brown A W. Temperature and strain measurements using the power, line-width, shape, and frequency shift of the Brillouin loss spectrum[J]. Proceedings of SPIE, 2002, 4920: 311-322.

[80] Wait P C, Newson T P. Reduction of coherent noise in the Landau Placzek ratio method for distributed fibre optic temperature sensing[J]. Optics Communications, 1996, 131(4/5/6): 285-289.

[81] Bolognini G, Soto M A, Di Pasquale F. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength fabry-pérot lasers[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1523-1525.

[82] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 2005, 30(11): 1276-1278.

[83] Xia H Y, Zhang C X, Mu H Q, et al. Edge technique for direct detection of strain and temperature based on optical time domain reflectometry[J]. Applied Optics, 2009, 48(2): 189-197.

[84] Lee C C, Chiang P W, Chi S. Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift[J]. IEEE Photonics Technology Letters, 2001, 13(10): 1094-1096.

[85] Lu Y G, Qin Z G, Lu P, et al. Distributed strain and temperature measurement by Brillouin beat spectrum[J]. IEEE Photonics Technology Letters, 2013, 25(11): 1050-1053.

[86] Weng Y, Ip E, Pan Z Q, et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 2015, 23(7): 9024-9039.

[87] ZhouX, GuoZ, Ke CJ, et al.Simultaneous temperature and strain sensing utilizing Brillouin frequency shifts contributed by multiple acoustic modes[C]∥2016 IEEE Photonics Conference (IPC), October 2-6, 2016, Waikoloa, HI, USA.New York: IEEE Press, 2016: 817- 818.

[88] Li A, Wang Y F, Hu Q, et al. Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR[J]. Optics Letters, 2014, 39(22): 6418-6421.

[89] WengY, IpE, Pan ZQ, et al. Distributed temperature and strain sensing using spontaneous Brillouin scattering in optical few-mode fibers[C]∥CLEO: 2015, San Jose, California. Washington, D.C.: OSA, 2015: SM2O. 5.

[90] Zou L F, Bao X Y, Afshar V S, et al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber[J]. Optics Letters, 2004, 29(13): 1485-1487.

[91] Zou W W, He Z Y, Hotate K. Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core[J]. Optics Express, 2012, 20(10): 11083-11090.

[92] Ding M J, Mizuno Y, Nakamura K. Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber[J]. Optics Express, 2014, 22(20): 24706-24712.

[93] Shi B, Xu H Z, Chen B, et al. A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan strait tunnel project[J]. Marine Georesources & Geotechnology, 2003, 21(3/4): 333-343.

[94] Klar A, Linker R. Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometry[J]. Tunnelling and Underground Space Technology, 2010, 25(5): 575-586.

[95] Klar A, Dromy I, Linker R. Monitoring tunneling induced ground displacements using distributed fiber-optic sensing[J]. Tunnelling and Underground Space Technology, 2014, 40: 141-150.

[96] Moffat R, Sotomayor J, Beltrán J F. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 233-243.

[97] Gue C Y, Wilcock M, Alhaddad M M, et al. The monitoring of an existing cast iron tunnel with distributed fibre optic sensing (DFOS)[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 573-586.

[98] Strong AP, SandersonN, LeesG, et al. A comprehensive distributed pipeline condition monitoring system and its field trial[C]∥2008 7th International Pipeline Conference, September 29-October 3, 2008, Calgary, Alberta, Canada. New York: American Society of Mechanical Engineers Digital Collection, 2008, 1: 711- 719.

[99] Bai Q, Yan W, Wang D, et al. Multi-parameter CBM pipeline safety monitoring system based on optical fiber sensing[J]. Proceedings of SPIE, 2018, 1084: 108491K.

[100] Lu Y Q, Shi B, Wei G Q, et al. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles[J]. Smart Materials and Structures, 2012, 21(11): 115011.

[101] Feng S J, Lu S F, Shi Z M. Field investigations of two super-long steel pipe piles in offshore areas[J]. Marine Georesources & Geotechnology, 2016, 34(6): 559-570.

[102] Zhang W, Gao J Q, Shi B, et al. Health monitoring of rehabilitated concrete bridges using distributed optical fiber sensing[J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(6): 411-424.

[103] Matta F, Bastianini F, Galati N, et al. Distributed strain measurement in steel bridge with fiber optic sensors: validation through diagnostic load test[J]. Journal of Performance of Constructed Facilities, 2008, 22(4): 264-273.

[104] He J P, Zhou Z. Optic fiber sensor-based smart bridge cable with functionality of self-sensing[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2): 84-94.

[105] Liu WQ, Wang HP, ZhouZ, et al. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure[C]∥2011 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, November 22, 2011, Beijing, China. Washington: Society of Photo-Optical Instrumentation Engineers, 2011, 8199: 130- 137.

[106] Nan S Q, Gao Q. Application of distributed optical fiber sensor technology based on BOTDR in similar model test of backfill mining[J]. Procedia Earth and Planetary Science, 2011, 2: 34-39.

[107] Cheng G, Shi B, Zhu H H, et al. A field study on distributed fiber optic deformation monitoring of overlying strata during coal mining[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 553-562.

[108] Wu J H, Jiang H T, Su J W, et al. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 587-597.

[109] Gu K, Shi B, Liu C, et al. Investigation of land subsidence with the combination of distributed fiber optic sensing techniques and microstructure analysis of soils[J]. Engineering Geology, 2018, 240: 34-47.

[110] Wang B J, Li K, Shi B, et al. Test on application of distributed fiber optic sensing technique into soil slope monitoring[J]. Landslides, 2009, 6(1): 61-68.

[111] Yin Y P, Wang H D, Gao Y L, et al. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China[J]. Landslides, 2010, 7(3): 339-349.

[112] Huntley D, Bobrowsky P, Qing Z, et al. Fiber optic strain monitoring and evaluation of a slow-moving landslide near Ashcroft, British Columbia, Canada[J]. Landslide Science for a Safer Geoenvironment, 2014: 415-421.

[113] Sun Y J, Shi B, Zhang D, et al. Internal deformation monitoring of slope based on BOTDR[J]. Journal of Sensors, 2016, 2016: 1-8.

[114] Suo W B, Lu Y, Shi B, et al. Development and application of a fixed-point fiber-optic sensing cable for ground fissure monitoring[J]. Journal of Civil Structural Health Monitoring, 2016, 6(4): 715-724.

包宇奔, 孙军强, 黄强. 布里渊光时域反射仪分布式光纤传感研究进展[J]. 激光与光电子学进展, 2020, 57(21): 210002. Bao Yuben, Sun Junqiang, Huang Qiang. Distributed Fiber Sensor Based on Brillouin Optical Time Domain Reflection Technique[J]. Laser & Optoelectronics Progress, 2020, 57(21): 210002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!