中国光学, 2019, 12 (5): 952, 网络出版: 2019-11-14   

基于电荷转移的钙钛矿单晶和多晶材料表面增强拉曼散射研究

Charge transfer induced surface enhanced Raman scattering of single crystal and polycrystal perovskites
作者单位
1 中国科学院 长春光学精密机械与物理研究所 郭春雷中美联合光子实验室,吉林 长春 130033
2 罗切斯特大学,光学研究所,纽约 罗切斯特,14627,美国
引用该论文

于治, 于伟利, 郭春雷. 基于电荷转移的钙钛矿单晶和多晶材料表面增强拉曼散射研究[J]. 中国光学, 2019, 12(5): 952.

YU Zhi, YU Wei-li, GUO Chun-lei. Charge transfer induced surface enhanced Raman scattering of single crystal and polycrystal perovskites[J]. Chinese Optics, 2019, 12(5): 952.

参考文献

[1] BURSCHKA J,PELLET N,MOON S J,et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature,2013,499(7458): 316-319.

[2] ZHAO Y X,ZHU K.Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews,2016,45(3): 655-689.

[3] TAN ZH K,MOGHADDAM R S,LAI M L,et al.. Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology,2014,9(9): 687-692.

[4] YU W L,LI F,WANG H,et al.. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale,2016,8(11): 6173-6179.

[5] SHI D,ADINOLFI V,COMIN R,et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science,2015,347(6221): 519-522.

[6] DONG Q F,FANG Y J,SHAO Y CH,et al.. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science,2015,347(6225): 967-970.

[7] ZHOU H P,CHEN Q,LI G,et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science,2014,345(6196): 542-546.

[8] HAO F,STOUMPOS C C,CAO D H,et al.. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics,2014,8(6): 489-494.

[9] MA CH,SHI Y M,HU W J,et al.. Heterostructured WS2/CH3NH3PbI3photoconductors with suppressed dark current and enhanced photodetectivity[J]. Advanced Materials,2016,28(19): 3683-3689.

[10] LIU M ZH,JOHNSTON M B,SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467): 395-398.

[11] JEON N J,NOH J H,KIM Y C,et al.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials,2014,13(9): 897-903.

[12] XING G CH,MATHEWS N,SUN SH Y,et al.. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science,2013,42(6156): 344-347.

[13] STRANKS S D,EPERON G E,GRANCINI G,et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science,2013,342(6156): 341-344.

[14] MARCHIORO A,TEUSCHER J,FRIEDRICH D,et al.. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells[J]. Nature Photonics,2014,8(3): 250-255.

[15] EDRI E,KIRMAYER S,MUKHOPADHYAY S,et al.. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells[J]. Nature Communications,2014,5: 3461.

[16] BEGUM R,PARIDA M R,ABDELHADY A L,et al.. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping[J]. Journal of the American Chemical Society,2017,139(2): 731-737.

[17] LIU J X,LENG J,WU K F,et al.. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films[J]. Journal of the American Chemical Society,2017,139(4): 1432-1435.

[18] FLEISCHMANN M,HENDRA P J,MCQUILLAN A J. Ramanspectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters,1974,26(2): 163-166.

[19] LOMBARDI J R,BIRKE R L. A unified approach to surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C,2008,112(14): 5605-5617.

[20] BELL S E J,SIRIMUTHU N M S. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews,2008,37(5): 1012-1024.

[21] PARK S,YANG P X,CORREDOR P,et al.. Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering[J]. Journal of the American Chemical Society,2002,124(11): 2428-2429.

[22] KNEIPP K,MOSKOVITS M,KNEIPP H. Surface-Enhanced Raman Scattering: Physics and Applications[M]. Berlin,Germany: Springer,2006.

[23] LOMBARDI J R,BIRKE R L. A unified view of surface-enhanced raman scattering[J]. Accounts of Chemical Research,2009,42(6): 734-742.

[24] YAMADA H,YAMAMOTO Y,TANI N. Surface-enhanced raman scattering(SERS) of adsorbed molecules on smooth surfaces of metals and a metal-oxide[J]. Chemical Physics Letters,1982,86(4): 397-400.

[25] YAMADA H,YAMAMOTO Y. Surface enhanced raman scattering(SERS) of chemisorbed species on various kinds of metals and semiconductors[J]. Surface Science,1983,134(1): 71-90.

[26] LING X,XIE L M,FANG Y,et al.. Can graphene be used as a substrate for raman enhancement [J]. Nano Letters,2010,10(2): 553-561.

[27] LIVINGSTONE R,ZHOU X C,TAMARGO M C,et al.. Surface enhanced raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy[J]. The Journal of Physical Chemistry C,2010,114(41): 17460-17464.

[28] JI W,KITAHAMA Y,XUE X X,et al.. Generation of pronounced resonance profile of charge-transfer contributions to surface-enhanced raman scattering[J]. The Journal of Physical Chemistry C,2012,116(3): 2515-2520.

[29] SUN ZH H,WANG CH X,YANG J X,et al.. Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C,2008,112(15): 6093-6098.

[30] MAO ZH,SONG W,XUE X X,et al.. Multiphonon resonant raman scattering and photoinduced charge-transfer effects at ZnO-molecule interfaces[J]. The Journal of Physical Chemistry C,2012,116(51): 26908-26918.

[31] WANG X L,WANG Y,SUI H M,et al.. Investigation of charge transfer in Ag/N719/TiO2 interface by surface-enhanced raman spectroscopy[J]. The Journal of Physical Chemistry C,2016,120(24): 13078-13086.

[32] TARAKESHWAR P,PALMA J L,FINKELSTEIN-SHAPIRO D,et al.. SERS as a probe of charge-transfer pathways in hybrid dye/molecule-metal oxide complexes[J]. The Journal of Physical Chemistry C,2014,118(7): 3774-3782.

[33] YU ZH,YU W L,XING J,et al.. Charge transfer effects on resonance-enhanced raman scattering for molecules adsorbed on single-crystalline perovskite[J]. ACS Photonics,2018,5(4): 1619-1627.

[34] MACULAN G,SHEIKH A D,ABDELHADY A L,et al.. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters,2015,6(19): 3781-3786.

[35] BAIKIE T,BARROW N S,FANG Y A,et al.. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3(X=I, Br and Cl)[J].Journal of Materials Chemistry A,2015,3(17): 9298-9307.

[36] LING X,FANG W J,LEE Y H,et al.. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2[J]. Nano Letters,2014,14(6): 3033-3040.

[37] TAN Y,MA L N,GAO ZH B,et al.. Two-dimensional heterostructure as a platform for surface-enhanced raman scattering[J]. Nano Letters,2017,17(4): 2621-2626.

[38] BASOVA T V,KOLESOV B A. Raman spectra of copper phthalocyanin: experiment and calculation[J]. Journal of Structural Chemistry,2000,41(5): 770-777.

[39] WANG M F,SPATARU T,LOMBARDI J R,et al.. Time resolved surface enhanced Raman scattering studies of 3-hydroxyflavone on a Ag electrode[J]. The Journal of Physical Chemistry C,2007,111(7): 3044-3052.

[40] WANG M F,TESLOVA T,XU F,et al.. Raman and surface enhanced Raman scattering of 3-hydroxyflavone[J]. The Journal of Physical Chemistry C,2007,111(7): 3038-3043.

[41] KIM Y C,YANG T Y,JEON N J,et al.. Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells[J]. Energy & Environmental Science,2017,10(10): 2109-2116.

[42] NIU B J,WU L L,TANG W,et al.. Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance[J]. CrystEngComm,2011,13(11): 3678-3681.

[43] SU Y H,TU S L,TSENG S W,et al.. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins[J]. Nanoscale,2010,2(12): 2639-2646.

[44] BABA A,AOKI N,SHINBO K,et al.. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J]. ACS Applied Materials & Interfaces,2011,3(6): 2080-2084.

[45] SU Y H,KE Y F,CAI SH L,et al.. Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell[J]. Light: Science & Applications,2012,1(6): e14.

于治, 于伟利, 郭春雷. 基于电荷转移的钙钛矿单晶和多晶材料表面增强拉曼散射研究[J]. 中国光学, 2019, 12(5): 952. YU Zhi, YU Wei-li, GUO Chun-lei. Charge transfer induced surface enhanced Raman scattering of single crystal and polycrystal perovskites[J]. Chinese Optics, 2019, 12(5): 952.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!