Photonics Research, 2019, 7 (2): 02000172, Published Online: Feb. 19, 2019   

Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter Download: 630次

Author Affiliations
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074, China
3 e-mail: xxiao@wri.com.cn
Copy Citation Text

Xu Wang, Feng Zhou, Dingshan Gao, Yanxian Wei, Xi Xiao, Shaohua Yu, Jianji Dong, Xinliang Zhang. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 02000172.

References

[1] ChangK., RF and Microwave Wireless Systems (Wiley, 2004).

[2] NeriF., Introduction to Electronic Defense Systems (SciTech, 2006).

[3] TuttleJ. R., “Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Digest of Technical Papers (1997), pp. 58.

[4] K. Domdouzis, B. Kumar, C. Anumba. Radio-frequency identification (RFID) applications: a brief introduction. Adv. Eng. Inform., 2007, 21: 350-355.

[5] X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, J. Yao. Photonics for microwave measurements. Laser Photon. Rev., 2016, 10: 711-734.

[6] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Lightwave Technol., 2017, 35: 3498-3513.

[7] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 2007, 1: 319-330.

[8] M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat. Photonics, 2009, 3: 139-143.

[9] L. V. T. Nguyen, D. B. Hunter. A photonic technique for microwave frequency measurement. IEEE Photon. Technol. Lett., 2006, 18: 1188-1190.

[10] L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, J. Dong. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun., 2015, 335: 266-270.

[11] D. Marpaung. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett., 2013, 25: 837-840.

[12] D. Marpaung, C. Roeloffzen, A. Leinse, M. Hoekman. A photonic chip based frequency discriminator for a high performance microwave photonic link. Opt. Express, 2010, 18: 27359-27370.

[13] J. S. Fandiño, P. Muñoz. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter. Opt. Lett., 2013, 38: 4316-4319.

[14] M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, D. Marpaung. Low-error and broadband microwave frequency measurement in a silicon chip. Optica, 2015, 2: 751-756.

[15] M. Burla, X. Wang, M. Li, L. Chrostowski, J. Azaña. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nat. Commun., 2016, 7: 13004.

[16] BurlaM.WangX.LiM.ChrostowskiL.AzañaJ., “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in CLEO 2015, OSA Technical Digest (Optical Society of America, 2015), paper STh4F.7.

[17] G. W. Anderson, D. C. Webb, A. E. Spezio, J. N. Lee. Advanced channelization for RF, microwave, and millimeterwave applications. Proc. IEEE, 1991, 79: 355-388.

[18] HunterD. B.EdvellL. G.EnglundM. A., “Wideband microwave photonic channelised receiver,” in International Topical Meeting on Microwave Photonics (2005), pp. 249252.

[19] A. O. J. Wiberg, D. J. Esman, L. Liu, J. R. Adleman, S. Zlatanovic, V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, E. W. Jacobs, S. Radic. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers. J. Lightwave Technol., 2014, 32: 3609-3617.

[20] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, M. Qi. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 2010, 4: 117-122.

[21] ZhangW.ZhangJ.YaoJ., “Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper,” in Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP) (IEEE, 2014), pp. 5153.

[22] W. Zhang, J. Yao. Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings. J. Lightwave Technol., 2015, 33: 5047-5054.

[23] YaoJ.LiW.ZhangW., “Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2014), paper W1J.2.

[24] P. Zhou, F. Zhang, X. Ye, Q. Guo, S. Pan. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser. IEEE Photon. J., 2016, 8: 5501909.

[25] S. T. Winnall, A. C. Lindsay. A Fabry-Perot scanning receiver for microwave signal processing. IEEE Trans. Microw. Theory Tech., 1999, 47: 1385-1390.

[26] L. V. T. Nguyen. Microwave photonic technique for frequency measurement of simultaneous signals. IEEE Photon. Technol. Lett., 2009, 21: 642-644.

[27] P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, W. Margulis. Photonic scanning receiver using an electrically tuned fiber Bragg grating. Opt. Lett., 2009, 34: 3794-3796.

[28] S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 2012, 24: 1115-1117.

[29] T. A. Nguyen, E. H. W. Chan, R. A. Minasian. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique. Opt. Lett., 2014, 39: 2419-2422.

[30] X. Long, W. Zou, J. Chen. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering. Opt. Express, 2017, 25: 2206-2214.

[31] H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, B. J. Eggleton. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 2016, 3: 30-34.

[32] F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, X. Zhang. Photonic multiple microwave frequency measurement based on frequency-to-time mapping. IEEE Photon. J., 2018, 10: 5500807.

[33] H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, X. Zhang. A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 2018, 36: 4312-4318.

[34] D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, B. J. Eggleton. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express, 2013, 21: 23286-23294.

[35] F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, X. Zhang. Frequency-hopping microwave generation with a large time-bandwidth product. IEEE Photon. J., 2018, 10: 7800809.

[36] Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, D. Van Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 2015, 9: 837-842.

[37] Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, H. Yang. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics, 2016, 10: 595-599.

[38] PanZ.XuX.ChungC.-J.DalirH.YanH.ChenK.WangY.ChenR. T., “High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper M2I.2.

[39] SunJ.SakibM.DriscollJ.KumarR.JayatillekaH.ChetritY.RongH., “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.

Xu Wang, Feng Zhou, Dingshan Gao, Yanxian Wei, Xi Xiao, Shaohua Yu, Jianji Dong, Xinliang Zhang. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 02000172.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!