Matter and Radiation at Extremes, 2020, 5 (6): 064201, Published Online: Nov. 24, 2020   

Dielectronic recombination in non-LTE plasmas

Author Affiliations
1 Sorbonne University, Faculty of Science and Engineering, UMR 7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
2 LULI, Ecole Polytechnique, CNRS-CEA, Physique Atomique dans les Plasmas Denses (PAPD), Route de Saclay, F-91128 Palaiseau Cedex, France
3 Moscow Institute of Physics and Technology MIPT (National Research University), Dolgoprudnyi 141700, Russia
4 National Research Nuclear University—MEPhI, Department of Plasma Physics, Moscow 115409, Russia
5 National Research Center “Kurchatov Institute”, Moscow, Russia
6 P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
Copy Citation Text

F. B. Rosmej, V. A. Astapenko, V. S. Lisitsa, L. A. Vainshtein. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 2020, 5(6): 064201.

References

[1] H. R.Griem, Principles of Plasma Spectroscopy (Cambridge University Press, New York, 1997).

[2] F. B.Rosmej, V. A.Astapenko, and V. S.Lisitsa, Plasma Atomic Physics (Springer, 2020).

[3] A.Burgess, “Dielectronic recombination and the temperature of the solar corona,” Astrophys. J.139, 776 (1964); 10.1086/147813A.Burgess, “Dielectronic recombination and the temperature of the solar corona,” 141, 1588 (1965).

[4] A. H. Gabriel. Dielectronic satellite spectra for highly-charge helium-like ion lines. Mon. Not. R. Astron. Soc., 1972, 160: 99.

[5] I. Yu. Skobelev, V. A. Vinogradov, E. A. Yukov. Effect of collisions on the intensities of the dielectronic satellites of resonance lines of hydrogenlike ions. Sov. Phys. JETP, 1977, 45: 925.

[6] M. Blaha, V. L. Jacobs. Effects of angular-momentum-changing collisions on dielectronic satellite spectra. Phys. Rev. A, 1980, 21: 525.

[7] J. Abdallah, F. B. Rosmej. Blue satellite structure near Heα and Heβ and redistribution of level populations. Phys. Lett. A, 1998, 245: 548.

[8] C. F. Hooper, V. L. Jacobs, L. A. Woltz. Effects of electric microfields on argon dielectronic satellite spectra in laser-produced plasmas. Phys. Rev. A, 1991, 44: 1281.

[9] A. Calisti, E. Galtier, F. B. Rosmej, et al.. Interference effects and Stark broadening in XUV intra-shell transitions in aluminum under conditions of intense XUV free electron laser irradiation. Phys. Rev. A, 2013, 87: 033422.

[10] F. B. Rosmej. Hot electron x-ray diagnostics. J. Phys. B: At., Mol. Opt. Phys., 1997, 30: L819.

[11] S. H. Glenzer, R. W. Lee, F. B. Rosmej. Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy. Phys. Rev. Lett., 1998, 81: 365.

[12] A. Colaitis, O. Renner, M. Smid, et al.. Characterization of suprathermal electrons inside a laser accelerated plasma via highly-resolved Kα emission. Nat. Commun., 2019, 10: 4212.

[13] E. Galtier, D. Riley, F. B. Rosmej, et al.. Decay of crystaline order and equilibration during solid-to-plasma transition induced by 20-fs microfocused 92 eV free electron laser pulses. Phys. Rev. Lett., 2011, 106: 164801.

[14] R. W. Lee, F. B. Rosmej. Hollow ion emission driven by pulsed x-ray radiation fields. Europhys. Lett., 2007, 77: 24001.

[15] J. Abdallah, J. Colgan, A. Y. Faenov, et al.. Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime. Phys. Rev. Lett., 2013, 110: 125001.

[16] R. C. Elton, H. R. Griem, F. B. Rosmej, et al.. Investigation of charge exchange induced formation of two electron satellite transitions in dense laser produced plasmas. Phys. Rev. E, 2002, 66: 056402.

[17] V. S. Lisitsa, F. B. Rosmej, R. Schott. Charge exchange driven X-ray emission from highly ionized plasma jets. Europhys. Lett., 2006, 76: 815.

[18] V. S. Lisitsa, F. B. Rosmej. A self-consistent method for the determination of neutral density from X-ray impurity spectra. Phys. Lett. A, 1998, 244: 401.

[19] V. S. Lisitsa, D. Reiter, F. B. Rosmej. Influence of charge exchange processes on X-ray spectra in TEXTOR tokamak plasmas: Experimental and theoretical investigation. Plasma Phys. Controlled Fusion, 1999, 41: 191.

[20] V. S. Lisitsa, F. B. Rosmej. Non-equilibrium radiative properties in fluctuating plasmas. Plasma Phys. Rep., 2011, 37: 521.

[21] A. Y. Faenov, F. B. Rosmej. New innershell phenomena from Rydberg series of highly charged ions. Phys. Scr., 1997, T73: 106.

[22] A. Y. Faenov, T. A. Pikuz, F. B. Rosmej. Inner-shell satellite transitions in dense short pulse plasmas. J. Quant. Spectrosc. Radiat. Transfer, 1997, 58: 859.

[23] A. Y. Faenov, T. A. Pikuz, F. B. Rosmej. Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl′ in laser produced plasmas. J. Phys. B: At., Mol. Opt. Phys., 1998, 31: L921.

[24] E. Krouský, O. Renner, F. B. Rosmej. Observation of H-like Al Lyα disappearance in dense cold laser produced plasmas. Appl. Phys. Lett., 2001, 79: 177.

[25] B. Deschaud, O. Peyrusse, F. B. Rosmej. Simulation of XFEL induced fluorescence spectra of hollow ions and studies of dense plasma effects. Phys. Plasmas, 2020, 27: 063303.

[26] I. I.Sobelman and L. A.Vainshtein, Excitation of Atomic Spectra (Alpha Science, 2006).

[27] C. Bowen, R. Florido, J. G. Rubiano. Review of the 4th NLTE code comparison workshop. High Energy Density Phys., 2007, 3: 225.

[28] C. Bowen, H.-K. Chung, C. J. Fontes. Comparison and analysis of collisional-radiative models at the NLTE-7 workshop. High Energy Density Phys., 2013, 9: 645.

[29] J. Colgan, C. F. Fontes, H. Zhang. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV. Atoms, 2015, 3: 76.

[30] A.Sommerfeld, Atombau und Spektrallinien (Harri Deutsch, 1978), Vol. II.

[31] V. I. Kogan, A. B. Kukushkin, V. S. Lisitsa. Kramers electrodynamics and electron-atomic radiative collisional processes. Phys. Rep., 1992, 213: 1.

[32] R. D.Cowan, The Theory of Atomic Structure and Spectra (California University Press, 1981).

[33] Handbook of Atomic, Molecular, and Optical Physics, edited by G. W. F.Drake (Springer, 2006).

[34] A.Pradhan and S. N.Nahar, Atomic Astrophysics and Spectroscopy (Cambridge University Press, Cambridge, 2011).

[35] V. A.Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids (Springer, 2013).

[36] U. I. Safronova, L. A. Vainshtein. Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like ions. At. Data Nucl. Data Tables, 1978, 21: 49.

[37] F. F. Goryaev, A. M. Urnov, L. A. Vainshtein. Atomic data for doubly-excited states 2lnl′ of He-like and 1s2lnl′ of Li-like ions with Z=6-36 and n=2,3. At. Data Nucl. Data Tables, 2017, 113: 117.

[38] I. L. Beigman, B. N. Chichkov, L. A. Vainshtein. Dielectronic recombination. J. Exp. Theor. Phys., 1981, 53: 490.

[39] V. S.Lisitsa, Atoms in Plasmas (Springer, 1994).

[40] D. S. Leontyev, V. S. Lisitsa. Statistical model of dielectronic recombination of heavy ions in plasmas. Contrib. Plasma Phys., 2016, 56: 846.

[41] A. V. Demura, D. S. Leont’iev, V. S. Lisitsa. Statistical dielectronic recombination rates for multielectron ions in plasma. J. Exp. Theor. Phys., 2017, 125: 663.

[42] V. P.Shevelko and L. A.Vainshtein, Atomic Physics for Hot Plasmas (IOP Publishing, Bristol, 1993).

[43] L. A.Vainshtein and V. P.Shevelko, Program ATOM, Preprint No. 43, Lebedev Physical Institute, Moscow1996.

[44] L. A.Vainshtein, Proc. P. N. Lebedev Inst.119, 3 (1980).

[45] F.Petitdemange and F. B.Rosmej, “Dielectronic satellites and Auger electron heating: Irradiation of solids by intense XUV-free electron laser radiation,” in New Trends in Atomic & Molecular Physics: Advanced Technological Applications, edited by M.Mohan (Springer, 2013), Vol. 76, pp. 91114, ISBN: 978-3-642-38166-9.

[46] F. B. Rosmej. Diagnostic properties of Be-like and Li-like satellites in dense transient plasmas under the action of highly energetic electrons. J. Quant. Spectrosc. Radiat. Transfer, 1994, 51: 319.

[47] F. B. Rosmej. A new type of analytical model for complex radiation emission of hollow ions in fusion and laser produced plasmas. Europhys. Lett., 2001, 55: 472.

[48] F. B. Rosmej. An alternative method to determine atomic radiation. Europhys. Lett., 2006, 76: 1081.

[49] F. B.Rosmej, “X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas,” in Highly Charged Ion Spectroscopic Research, edited by Y.Zou and R.Hutton (Taylor and Francis, 2012), pp. 267341, ISBN: 9781420079043.

[50] V. A. Astapenko, X. Li, F. B. Rosmej. An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasmas, 2019, 26: 033301.

[51] X. Li, F. B. Rosmej. Analytical approach to level delocalization and line shifts in finite temperature dense plasmas. Phys. Lett. A, 2020, 384: 126478.

[52] H. A.Bethe and E. E.Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum Publishing, New York, 1977);J. D.Hey, “On the role of atomic metastability in the production of Balmer line radiation from cold atomic hydrogen, deuterium and hydrogenic ion impurities in fusion edge plasmas,” J. Phys. B: At., Mol. Opt. Phys.45, 065701 (2012).

[53] J. Davis, V. L. Jacobs. Effects of plasma microfields on radiative transitions from atomic levels above the ionization threshold. Phys. Rev. A, 1975, 12: 2017.

[54] J. Davis, V. L. Jacobs, P. C. Kepple. Enhancement of dielectronic recombination by plasma electric microfields. Phys. Rev. Lett., 1976, 37: 1390.

[55] J. Davis, V. L. Jacobs. Properties of Rydberg autoionizing states in electric field. Phys. Rev. A, 1979, 19: 776.

[56] M. F.Gu, “The flexible atomic code FAC,” Can. J. Phys.86(5), 675 (2008);10.1139/p07-197I. P.Grant and N. C.Pyper, “Breit interaction in multi-configuration relativistic atomic calculations,” J. Phys. B: A., Mol. Phys.9, 761 (1976).

[57] L. A. Bureyeva, T. Kato, V. S. Lisitsa. Quasiclassical representation of autoionization decay reates in parabolic coordinates. J. Phys. B: At., Mol. Opt. Phys., 2001, 34: 3909.

[58] L. A. Bureyeva, T. Kato, V. S. Lisitsa, et al.. Quasiclassical theory of dielectronic recombination in plasmas. Phys. Rev. A, 2002, 65: 032702.

[59] F.Robicheaux and M. S.Pindzola, “Enhanced dielectronic recombination in crossed electric and magnetic fields,” Phys. Rev. Lett.79, 2237 (1997);10.1103/physrevlett.79.2237J. D.Hey, “On the Runge-Lenz-Pauli vector operator as an aid to the calculations of atomic processes in laboratory and astrophysical plasmas,” J. Phys. B: At., Mol. Opt. Phys.48, 185701 (2015);10.1088/0953-4075/48/18/185701J. D.Hey, “On the use of the axially symmetric paraboloidal coordinate system in deriving some properties of Stark states of hydrogenic atomc and ions,” J. Phys. A: Math. Theor.52, 045203 (2019).

[60] P. Gombas. Erweiterung der statistischen theroy des atoms. Z. Phys., 1943, 121: 523.

[61] P.Gombas, Die statistische theorie des Atoms und ihre Anwendungen (Springer-Verlag, Wien, 1949).

[62] P. Gombás. Present state of the statistical theory of atoms. Rev. Mod. Phys., 1963, 35: 512.

[63] C. Deutsch, P. Fromy, G. Maynard. Thomas-Fermi-like and average atom models for dense and hot matter. Phys. Plasmas, 1996, 3: 714.

[64] E. H. Lieb, B. Simon. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math., 1977, 23: 22.

[65] G. Kemister, S. Nordholm. A radially restricted Thomas-Fermi theory for atoms. J. Chem. Phys., 1982, 76: 5043.

[66] A. V. Demura, M. B. Kadomtsev, V. S. Lisitsa. Universal statistical approach to radiative and collisional processes with multielectron ions in plasmas. High Energy Density Phys., 2015, 15: 49.

[67] A. Sommerfeld. Integrazione asintotica dell’equazione differentiale di Thomas–Fermi. Rend. R. Accad. Lincei, 1932, 15: 293.

[68] V. D. Kirillow, B. A. Trubnikov, S. A. Trushin. Role of impurities in anomalous plasma resistance. Sov. J. Plasma Phys., 1975, 1: 117.

[69] C. P. Balance, S. D. Loch, M. S. Pindzola, et al.. Dielectronic recombination of W35+. J. Phys. B: At., Mol. Opt. Phys., 2010, 43: 205201.

[70] Y. Fu, X. Ma, Z. Wu. Electronic impact excitation and dielectronic recombination of highly charged tungsten ions. Atoms, 2015, 3: 474.

[71] E. Behar, P. Mandelbaum, J. L. Schwob. Dielectronic recombination rate coefficients for highly-ionized Ni-like atoms. Phys. Rev. A, 1996, 54: 3070.

F. B. Rosmej, V. A. Astapenko, V. S. Lisitsa, L. A. Vainshtein. Dielectronic recombination in non-LTE plasmas[J]. Matter and Radiation at Extremes, 2020, 5(6): 064201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!