Photonics Research, 2019, 7 (1): 01000019, Published Online: Feb. 21, 2019  

Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers

Author Affiliations
1 Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
2 Current address: Agency for Defense Development, Daejeon 34186, South Korea
Copy Citation Text

Hee Jung Lee, Hee Su Park. Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers[J]. Photonics Research, 2019, 7(1): 01000019.

References

[1] N. J. Cerf, M. Bourennane, A. Karlsson, N. Gisin. Security of quantum key distribution using d-level systems. Phys. Rev. Lett., 2002, 88: 127902.

[2] S. P. Walborn, D. S. Lemelle, M. P. Almeida, P. H. S. Ribeiro. Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett., 2006, 96: 090501.

[3] S. Etcheverry, G. Cañas, E. S. Gómez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier, G. Lima. Quantum key distribution session with 16-dimensional photonic states. Sci. Rep., 2013, 3: 2316.

[4] F. Bouchard, R. Fickler, R. W. Boyd, E. Karimi. High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv., 2017, 3: e1601915.

[5] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, D. J. Gauthier. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv., 2017, 3: e1701491.

[6] D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu. Bell inequality for arbitrarily high-dimensional systems. Phys. Rev. Lett., 2002, 88: 040404.

[7] X.-M. Hu, B.-H. Liu, Y. Guo, G.-Y. Xiang, Y.-F. Huang, C.-F. Li, G.-C. Guo, M. Kleinmann, T. Vértesi, A. Cabello. Observation of stronger-than-binary correlations with entangled photonic qutrits. Phys. Rev. Lett., 2018, 120: 180402.

[8] L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken, C. Saavedra, S. Pádua. Generation of entangled states of qudits using twin photons. Phys. Rev. Lett., 2005, 94: 100501.

[9] M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, J. C. Howell. Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits. Phys. Rev. Lett., 2005, 94: 220501.

[10] A. Rossi, G. Vallone, A. Chiuri, F. D. Martini, P. Mataloni. Multipath entanglement of two photons. Phys. Rev. Lett., 2009, 102: 153902.

[11] H. J. Lee, S.-K. Choi, H. S. Park. Experimental demonstration of four-dimensional photonic spatial entanglement between multicore optical fibres. Sci. Rep., 2017, 7: 4302.

[12] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, M. G. Thompson. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360: 285-291.

[13] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412: 313-316.

[14] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, E. Andersson. Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys., 2011, 7: 677-680.

[15] M. Erhard, R. Fickler, M. Krenn, A. Zeilinger. Twisted photon: new quantum perspectives in high dimensions. Light Sci. Appl., 2018, 7: 17146.

[16] BouchardF.HeshamiK.EnglandD.FicklerR.BoydR. W.EnglertB.-G.Sánchez-SotoL. L.KarimiE., “Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons,” arxiv:1802.05773v2 (2018).

[17] A. Martin, T. Guerreiro, A. Tiranov, S. Designolle, F. Fröwis, N. Brunner, M. Huber, N. Gisin. Quantifying photonic high-dimensional entanglement. Phys. Rev. Lett., 2017, 118: 110501.

[18] T. Ikuta, H. Takesue. Four-dimensional entanglement distribution over 100 km. Sci. Rep., 2018, 8: 817.

[19] S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, A. Zeilinger. Discrete tunable color entanglement. Phys. Rev. Lett., 2009, 103: 253601.

[20] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, R. Morandotti. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546: 622-626.

[21] G. Lima, A. Vargas, L. Neves, R. Guzmán, C. Saavedra. Manipulating spatial qudit states with programmable optical devices. Opt. Express, 2009, 17: 10688-10696.

[22] Q. P. Stefano, L. Rebón, S. Ledesma, C. Iemmi. Determination of any pure spatial qudits from a minimum number of measurements by phase-stepping interferometry. Phys. Rev. A, 2017, 96: 062328.

[23] M. A. Solís-Prosser, M. F. Fernandes, O. Jiménez, A. Delgado, L. Neves. Experimental minimum-error quantum-state discrimination in high dimensions. Phys. Rev. Lett., 2017, 118: 100501.

[24] Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, L. K. Oxenløwe. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf., 2017, 3: 25.

[25] G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, F. Figueroa, G. Vallone, P. Villoresi, T. Ferreira da Silva, G. B. Xavier, G. Lima. High-dimensional decoy-state quantum key distribution over 0.3  km of multicore telecommunication optical fibers. Phys. Rev. A, 2017, 96: 022317.

[26] J. Romero, D. Giovannini, M. G. McLaren, E. J. Galvez, A. Forbes, M. J. Padgett. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam. J. Opt., 2012, 14: 085401.

[27] E. V. Kovlakov, I. B. Bobrov, S. S. Straupe, S. P. Kulik. Spatial bell-state generation without transverse mode subspace postselection. Phys. Rev. Lett., 2017, 118: 030503.

[28] H. J. Lee, E. Lee, H. S. Park. Azimuth-rotated splicings of a four-core optical fiber for inter-core group delay compensation. IEEE Photon. Technol. Lett., 2017, 29: 2250-2253.

[29] D. Barrera, I. Gasulla, S. Sales. Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber. J. Lightwave Technol., 2015, 33: 2445-2450.

[30] A. Acín, T. Durt, N. Gisin, J. I. Latorre. Quantum nonlocality in two three-level systems. Phys. Rev. A, 2002, 65: 052325.

[31] A. Acín, R. Gill, N. Gisin. Optimal bell tests do not require maximally entangled states. Phys. Rev. Lett., 2005, 95: 210402.

[32] J.-L. Chen, C. Wu, L. C. Kwek, C. H. Oh, M.-L. Ge. Violating bell inequalities maximally for two d-dimensional systems. Phys. Rev. A, 2006, 74: 032106.

[33] C. Bernhard, B. Bessire, T. Feurer, A. Stefanov. Shaping frequency-entangled qudits. Phys. Rev. A, 2013, 88: 032322.

[34] T. Ikuta, H. Takesue. Enhanced violation of the Collins-Gisin-Linden-Massar-Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A, 2016, 93: 022307.

[35] G. M. Fernandes, N. J. Muga, A. M. Rocha, A. N. Pinto. Switching in multicore fibers using flexural acoustic waves. Opt. Express, 2015, 23: 26313-26325.

[36] Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, A. Forbes. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv., 2016, 2: e1501165.

Hee Jung Lee, Hee Su Park. Generation and measurement of arbitrary four-dimensional spatial entanglement between photons in multicore fibers[J]. Photonics Research, 2019, 7(1): 01000019.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!