发光学报, 2019, 40 (2): 215, 网络出版: 2019-03-11  

表面配体和器件结构对PbS胶体量子点电池性能的影响

Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells
作者单位
1 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2 中国科学院 可再生能源重点实验室, 广东 广州 510640
引用该论文

高文辉, 翟光美, 张彩峰, 邵智猛, 郑露露, 张勇, 李学敏, 许并社. 表面配体和器件结构对PbS胶体量子点电池性能的影响[J]. 发光学报, 2019, 40(2): 215.

GAO Wen-hui, ZHAI Guang-mei, ZHANG Cai-feng, SHAO Zhi-meng, ZHENG Lu-lu, ZHANG Yong, LI Xue-min, XU Bing-she. Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells[J]. Chinese Journal of Luminescence, 2019, 40(2): 215.

参考文献

[1] YUAN M J,LIU M X,SARGENT E H. Colloidal quantum dot solids for solution-processed solar cells [J]. Nat. Energy, 2016,1(3): 16016-1-9.

[2] KIM T,PALMIANO E,LIANG R Z,et al.. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption [J]. Appl. Phys. Lett., 2017,110(22): 223903-1-5.

[3] LAN X Z,VOZNYY O,DE ARQUER F P G,et al.. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation [J]. Nano Lett., 2016,16(7): 4630-4634.

[4] LPEZ A B C,VEGA A M,LPEZ A L. Next Generation of Photovoltaics [M]. Berlin,Heidelberg: Springer, 2012.

[5] BEARD M C. Multiple exciton generation in semiconductor quantum dots [J]. J. Phys. Chem. Lett., 2011,2(11): 1282-1288.

[6] PIETRYGA J M,PARK Y S,LIM J,et al.. Spectroscopic and device aspects of nanocrystal quantum dots [J]. Chem. Rev., 2016,116(18): 10513-10622.

[7] SHULGA A G,PIVETEAU L,BISRI S Z,et al.. Double gate PbS quantum dot field-effect transistors for tuneable electrical characteristics [J]. Adv. Electron. Mater., 2016,2(4): 1500467.

[8] SUKHOVATKIN V,HINDS S,BRZOZOWSKI L,et al.. Colloidal quantum-dot photodetectors exploiting multiexciton generation [J]. Science, 2009,324(5934): 1542-1544.

[9] KAGAN C R,LIFSHITZ E,SARGENT E H,et al.. Building devices from colloidal quantum dots [J]. Science, 2016,353(6302): aac5523-1-9.

[10] MCDONALD S A,KONSTANTATOS G,ZHANG S G,et al.. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nat. Mater., 2005,4(2): 138-142.

[11] KIM G H,DE ARQUER F P G,YOON Y J,et al.. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers [J]. Nano Lett., 2015,15(11): 7691-7696.

[12] LIU M X,VOZNYY O,SABATINI R,et al.. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids [J]. Nat. Mater., 2016,16(2): 258-263.

[13] CAO Y M,STAVRINADIS A,LASANTA T,et al.. The role of surface passivation for efficient and photostable PbS quantum dot solar cells [J]. Nat. Energy, 2016,1(4): 16035-1-23.

[14] MA W L,SWISHER S L,EWERS T,et al.. Photovoltaic performance of ultrasmall PbSe quantum dots [J]. ACS Nano, 2011,5(10): 8140-8147.

[15] ZHAI G M,CHURCH C P,BREEZE A J,et al.. Quantum dot PbS0.9Se0.1/TiO2 heterojunction solar cells [J]. Nanotechnology, 2012,23(40): 405401-1-7.

[16] 王恒,翟光美,张继涛,等. PbS量子点能级结构的尺寸和配体依赖性及其对异质结电池性能的影响 [J]. 无机材料学报, 2016,31(9): 915-922.

    WANG H,ZHAI G M,ZHANG J T,et al.. PbS quantum dots: size,ligand dependent energy level structures and their effects on the performance of heterojunction solar cells [J]. J. Inorgan. Mater., 2016,31(9): 915-922. (in Chinese)

[17] LAN X Z,VOZNYY O,KIANI A,et al.. Passivation using molecular halides increases quantum dot solar cell performance [J]. Adv. Mater., 2016,28(2): 299-304.

[18] CHUANG C H M,BROWN P R,BULOVIC' V,et al.. Improved performance and stability in quantum dot solar cells through band alignment engineering [J]. Nat. Mater., 2014,13(8): 796-801.

[19] ZHAI G M,BEZRYADINA A,BREEZE A J,et al.. Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency [J]. Appl. Phys. Lett., 2011,99(6): 063512-1-3.

[20] LIU D Y,KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques [J]. Nat. Photon., 2014,8(2): 133-138.

[21] HUANG Z,ZHAI G M,ZHANG Z M,et al.. Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation [J]. CrystEngComm, 2017,19(6): 946-951.

[22] 解镕玮. PbS、FeS2纳米晶光电性能及在薄膜太阳能电池中的应用研究 [D]. 太原: 太原理工大学, 2015.

    XIE R W. The Optoelectronic Properties and Applications in Thin Film Solar Cells of PbS and Pyrite FeS2 Nanocrystals [D]. Taiyuan: Taiyuan University of Technology, 2015. (in Chinese)

[23] ZHAI G M,XIE R W,WANG H,et al.. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films [J]. J. Alloys Compd., 2016,674: 9-15.

[24] NING Z J,VOZNYY O,PAN J,et al.. Air-stable n-type colloidal quantum dot solids [J]. Nat. Mater., 2014,13(8): 822-828.

[25] STAVRINADIS A,PRADHAN S,PAPAGIORGIS P,et al.. Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency >10% [J]. ACS Energy Lett., 2017,2(4): 739-744.

[26] GAO W H,ZHAI G M,ZHANG C F,et al.. Towards understanding the initial performance improvement of PbS quantum dot solar cells upon short-term air exposure [J]. RSC Adv., 2018,8(27): 15149-15157.

高文辉, 翟光美, 张彩峰, 邵智猛, 郑露露, 张勇, 李学敏, 许并社. 表面配体和器件结构对PbS胶体量子点电池性能的影响[J]. 发光学报, 2019, 40(2): 215. GAO Wen-hui, ZHAI Guang-mei, ZHANG Cai-feng, SHAO Zhi-meng, ZHENG Lu-lu, ZHANG Yong, LI Xue-min, XU Bing-she. Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells[J]. Chinese Journal of Luminescence, 2019, 40(2): 215.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!