光学学报, 2018, 38 (2): 0223002, 网络出版: 2018-08-30  

涂覆石墨烯的并行电介质纳米线中的模式分析 下载: 785次

Analysis of Modes in Graphene-Coated Parallel Dielectric Nanowires
作者单位
1 山西大学物理电子工程学院, 山西 太原 030006
2 山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
引用该论文

彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的并行电介质纳米线中的模式分析[J]. 光学学报, 2018, 38(2): 0223002.

Yanling Peng, Wenrui Xue, Zhuangzhi Wei, Changyong Li. Analysis of Modes in Graphene-Coated Parallel Dielectric Nanowires[J]. Acta Optica Sinica, 2018, 38(2): 0223002.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[2] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

    Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

[3] Huang Z R, Wang L L, Sun B, et al. A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface[J]. Journal of Optics, 2014, 16(10): 105004.

    Huang Z R, Wang L L, Sun B, et al. A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface[J]. Journal of Optics, 2014, 16(10): 105004.

[4] Wang X, Zhi L J, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.

    Wang X, Zhi L J, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1): 323-327.

[5] 田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

    田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

    Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.

    Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.

[6] Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. The Journal of Physical Chemistry C, 2009, 113(30): 13103-13107.

    Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphene materials[J]. The Journal of Physical Chemistry C, 2009, 113(30): 13103-13107.

[7] Lu G H, Ocola L E, Chen J H. Gas detection using low-temperature reduced graphene oxide sheets[J]. Applied Physics Letters, 2009, 94(8): 083111.

    Lu G H, Ocola L E, Chen J H. Gas detection using low-temperature reduced graphene oxide sheets[J]. Applied Physics Letters, 2009, 94(8): 083111.

[8] Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 2008, 8(10): 3166-3170.

    Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Letters, 2008, 8(10): 3166-3170.

[9] 耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602.

    耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602.

    Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in teraherz[J]. Laser & Optoelectrinics Progress, 2017, 54(3): 031602.

    Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in teraherz[J]. Laser & Optoelectrinics Progress, 2017, 54(3): 031602.

[10] Liu P H, Zhang X Z, Ma Z H, et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440.

    Liu P H, Zhang X Z, Ma Z H, et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440.

[11] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physics Review B, 2009, 80(24): 245435.

    Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physics Review B, 2009, 80(24): 245435.

[12] Wang B, Zhang X, Yuan X C, et al. Optical coupling of surface plasmons between graphene sheets[J]. Applied Physics Letters, 2012, 100(13): 131111.

    Wang B, Zhang X, Yuan X C, et al. Optical coupling of surface plasmons between graphene sheets[J]. Applied Physics Letters, 2012, 100(13): 131111.

[13] Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440.

    Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440.

[14] Gao Y X, Ren G B, Zhu B F, et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 2014, 39(20): 5909-5912.

    Gao Y X, Ren G B, Zhu B F, et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 2014, 39(20): 5909-5912.

[15] Liu J P, Zhai X, Wang L L, et al. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range[J]. Optics Express, 2016, 24(5): 5376-5386.

    Liu J P, Zhai X, Wang L L, et al. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range[J]. Optics Express, 2016, 24(5): 5376-5386.

[16] Zhu B F, Ren G B, Gao Y X, et al. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes[J]. Optics Express, 2014, 22(20): 24096-24103.

    Zhu B F, Ren G B, Gao Y X, et al. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes[J]. Optics Express, 2014, 22(20): 24096-24103.

[17] Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

    Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

[18] Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

    Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[19] Mueller T, Xia F, Freitag M, et al. Role of contacts in graphene transistors: a scanning photocurrent study[J]. Physics Review B, 2009, 79(24): 245430.

    Mueller T, Xia F, Freitag M, et al. Role of contacts in graphene transistors: a scanning photocurrent study[J]. Physics Review B, 2009, 79(24): 245430.

[20] Bao Q L, Zhang H, Yang J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791.

    Bao Q L, Zhang H, Yang J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791.

[21] Kim J T, Kim J, Choi H, et al. Graphene-based photonic devices for soft hybrid optoelectronic systems[J]. Nanotechnology, 2012, 23(34): 344005.

    Kim J T, Kim J, Choi H, et al. Graphene-based photonic devices for soft hybrid optoelectronic systems[J]. Nanotechnology, 2012, 23(34): 344005.

[22] Gao Y X, Ren G B, Zhu B F, et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 2014, 22(20): 24322-24331.

    Gao Y X, Ren G B, Zhu B F, et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 2014, 22(20): 24322-24331.

[23] Zhu B F, Ren G B, Yang Y, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2015, 10(4): 839-845.

    Zhu B F, Ren G B, Yang Y, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2015, 10(4): 839-845.

[24] Sensale-Rodriguez B. Graphene-based optoelectronics[J]. Journal of Lightwave Technology, 2015, 33(5): 1100-1108.

    Sensale-Rodriguez B. Graphene-based optoelectronics[J]. Journal of Lightwave Technology, 2015, 33(5): 1100-1108.

[25] Yang J F, Yang J J, Deng W, et al. Transmission properties and molecular sensing application of CGPW[J]. Optics Express, 2015, 23(25): 32289-32299.

    Yang J F, Yang J J, Deng W, et al. Transmission properties and molecular sensing application of CGPW[J]. Optics Express, 2015, 23(25): 32289-32299.

[26] Wijingaard W. Guided normal modes of two parallel circular dielectric rods[J]. Journal of the Optical Society of America, 1973, 63(8): 944-950.

    Wijingaard W. Guided normal modes of two parallel circular dielectric rods[J]. Journal of the Optical Society of America, 1973, 63(8): 944-950.

[27] Wijingaard W. Some normal modes of an infinite hexagonal array of identical circular dielectric rods[J]. Journal of the Optical Society of America, 1974, 64(8): 1136-1144.

    Wijingaard W. Some normal modes of an infinite hexagonal array of identical circular dielectric rods[J]. Journal of the Optical Society of America, 1974, 64(8): 1136-1144.

[28] Huang H S, Chang H C. Analysis of equilateral three-core fibers by circular harmonics expansion method[J]. Journal of Lightwave Technology, 1990, 8(6): 945-952.

    Huang H S, Chang H C. Analysis of equilateral three-core fibers by circular harmonics expansion method[J]. Journal of Lightwave Technology, 1990, 8(6): 945-952.

[29] Lo K M. McPhedran R C, Bassett I M, et al. An electromagnetic theory of dielectric waveguides with multiple embedded cylinders[J]. Journal of Lightwave Technology, 1994, 12(3): 396-410.

    Lo K M. McPhedran R C, Bassett I M, et al. An electromagnetic theory of dielectric waveguides with multiple embedded cylinders[J]. Journal of Lightwave Technology, 1994, 12(3): 396-410.

[30] White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers. Ⅰ. formulation[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330.

    White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers. Ⅰ. formulation[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330.

[31] Kuhlmey B T, White T P, Renversez G, et al. Multipole method for microstructured optical fibers. Ⅱ. implementation and results[J]. Journal of the Optical Society of America B, 2002, 19(10): 2331-2340.

    Kuhlmey B T, White T P, Renversez G, et al. Multipole method for microstructured optical fibers. Ⅱ. implementation and results[J]. Journal of the Optical Society of America B, 2002, 19(10): 2331-2340.

[32] Sun S L, Chen H T, Zheng W J, et al. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems[J]. Optics Express, 2013, 21(12): 14591-14605.

    Sun S L, Chen H T, Zheng W J, et al. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems[J]. Optics Express, 2013, 21(12): 14591-14605.

[33] Liu J P, Zhai X, Wang L L, et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 2016, 11(3): 703-711.

    Liu J P, Zhai X, Wang L L, et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 2016, 11(3): 703-711.

彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的并行电介质纳米线中的模式分析[J]. 光学学报, 2018, 38(2): 0223002. Yanling Peng, Wenrui Xue, Zhuangzhi Wei, Changyong Li. Analysis of Modes in Graphene-Coated Parallel Dielectric Nanowires[J]. Acta Optica Sinica, 2018, 38(2): 0223002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!