中国光学, 2018, 11 (1): 1, 网络出版: 2018-03-15   

超短脉冲激光诱导周期性表面结构

Laser-induced periodic surface structures with ultrashort laser pulse
作者单位
1 法国里昂大学 让莫内大学 法国国家科学研究中心休伯特居里实验室, 法国 圣埃蒂安市 42000
2 中国科学院 西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
3 陕西科技大学 机电工程学院, 陕西 西安710012
引用该论文

李晨, STOIAN Razvan, 程光华. 超短脉冲激光诱导周期性表面结构[J]. 中国光学, 2018, 11(1): 1.

LI Chen, STOIAN Razvan, CHENG Guang-hua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1.

参考文献

[1] BIRNBAU M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics,1965,36(11): 3688-3689.

[2] ZHANG W,CHENG G H,FENG Q,et al.. Abrupt transition from wavelength structure to subwavelength structure in a single-crystal superalloy induced by femtosecond laser[J]. Applied Surface Science,2011,257(9): 4321-4324.

[3] DERRIENA TJ-Y,TORRES R,SARNET T,et al.. Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments[J]. Applied Surface Science,2012,258: 9487-9490.

[4] GOLOSOV E V,IONIN A A,KOLOBOV Y R,et al.. Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses[J]. Nanotechnologies in Russia,2011,6: 237-243.

[5] BOROWIEC A,HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters,2003,82(25): 4462-4464.

[6] BONSE J,BAUDACH S,KRUGER J,et al.. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A,2002,74(1): 19-25.

[7] COSTACHE F,ARGUIROVA S K,REIF J. Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation[J]. Applied Physics A,2004,79(4): 1429-1432.

[8] HSU E M,CRAWFORD T H R,TIEDJE H F,et al.. Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm[J]. Applied Physics Letters,2007,91: 111102.

[9] DUMITRU G,ROMANO V,WEBER H P,SENTIS M,et al.. Ablation of carbide materials with femtosecond pulses[J]. Applied Surface Science,2003,205: 80-85.

[10] BAUDACH S,BONSE J,KAUTEK W. Ablation experiments on polyimide with femtosecond laser pulses[J]. Applied Physics A,1999,69(Suppl.): S395-S398.

[11] KANEKO S,ITO T,AKIYAMA K,et al.. Nano-strip grating lines self-organized by high speed scanning CW laser[J]. Nanotechnology,2011,22: 175307.

[12] LI C,CHENG G H,COLOMBIER J P,et al.. Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4[J]. Journal of Optics,2016,18(1): 015402.

[13] YOUNG J F,PRESTON J S,DRIEL H M,et al.. Sipe. Laser-induced periodic surface structure.II.experiments on Ge, Si, Al, and brass[J]. Physical Review B,1983,27(2): 1155-1172.

[14] SIPE J E,YOUNG . F,PRESTON J S,et al.. van Driel. Laser-induced periodic surface structure.I[J]. Theory. Physical Review B,1983,27: 1141-1154.

[15] SAKABE S,HASHIDA M,TOKITA S,et al.. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B,2009,79(3): 033409.

[16] OKAMURO M,HASHIDA M,MIYASAKA Y,et al.. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation[J]. Physical Review B,2010,82(16): 165417.

[17] HWANG T Y,GUO C. Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals[J]. Journal of Applied Physics,2010,108(7): 073523.

[18] VOROBYEV A Y,MAKIN V S,GUO C. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. Journal of Applied Physics,2007,101(3): 034903.

[19] VOROBYEV A Y,GUO C. Femtosecond laser-induced periodic surface structure formation on tungsten[J]. Journal of Applied Physics,2008,104(6): 063523.

[20] COLOMBIER J P,GARRELIE F,BRUNET P,et al.. Plasmonic and hydrodynamic effects in ultrafast laser-induced periodic surface structures on metals[J]. Journal of Laser Micro/Nanoengineering,2012,7(3): 362-368.

[21] VARLAMOVA O,REIF J,VARLAMOV S,et al.. Progress in Nonlinear Nano-optics(Ed. by Sakabe Shuji, Lienau Christoph, Grunwald and R diger)[M]. Springer,2015: 4.

[22] WANG J,GUO C. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Applied Physics Letters,2005,87(25): 251914.

[23] WANG J,GUO C. Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. Journal of Applied Physics,2007,102(5): 053522.

[24] GARRELIE F,COLOMBIE J P,PIGEON F,et al. Parriaux. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Optics Express,2011,19(10): 9035-9043.

[25] TSUKAMOTO M,ASUKA K,NSKSNO H,et al.. Periodic microstructures produced by femtosecond laser irradiationon titanium plate[J]. Vacuum,2006,80(11): 1346-1350.

[26] BONSE J,KRUGER J,HOHMS,et al.. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications,2012,24(4): 042005.

[27] GOLOSOV E V,EMELYANOV V I,IONIN A A,et al.. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface[J]. JETP Letters,2009,90(2): 107-110.

[28] VOROBYEY A Y,GUO C. Femtosecond laser structuring of titanium implants[J]. Applied Surface Science,2007,253: 7272-7280.

[29] ZHAO Q Z,MALZER S,WANG L J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses[J]. Optics Letters,2007,32(13): 1932-1934.

[30] HUANG M,ZHAO F,CHENG Y,et al.. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano,2009,3: 4062-4070.

[31] DUSSER B,SAGAN Z,SODER H,et al.. Controlled nanostructures formation by ultra fast laser pulses for color marking[J]. Optics Express,2010,18(3): 2913-2924.

[32] BYSKOV-NIELSEN J, SAVOLAINEN J M, CHRISTENSEN M S,et al.. Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates[J]. Applied Physics A,2010,101(1): 97-101.

[33] BONSE J,ROSENFELD A,KRUGER J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structuresupon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics,2009,106(10): 104910.

[34] DERRIEN T J Y,ITINA T E,TORRE R,et al.. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon[J]. Journal of Applied Physics,2013,114: 083104.

[35] BONSE J,KRUGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. Journal of Applied Physics,2010,108(3): 034903.

[36] BINSE J,ROSENFELD A,KRUGER J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures[J]. Applied Surface Science,2011,257: 5420-5423.

[37] SKOLSKI J Z P,ROMER G R B E,OBONA J V,et al.. Laser-induced periodic surface structures: fingerprints of light localization[J]. Physical Review B,2012,85(7): 075320.

[38] SKOLSKI J Z P,ROMER G R B E,OBONA J V,et al.. Inhomogeneous absorption of laser radiation: trigger of LIPSS formation[J]. Journal of Laser Micro/Nanoengineering,2013,8(1): 1-5.

[39] BONSE J,MUNZ M,STURM H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics,2005,97(1): 013538.

[40] DUFFT D,ROSENFELD A,DAS S K,et al.. Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO[J]. Journal of Applied Physics,2009,105(3): 034908.

[41] WU Q,MA Y,FANG R,et al.. Femtosecond laser-induced periodic surface structure on diamond film[J]. Applied Physics Letters,2003,82(11): 1703-1705.

[42] HOHM S,ROSENFELD A,KRUGER J,et al.. Femtosecond laser-induced periodic surface structures on silica[J]. Journal of Applied Physics,2012,112: 014901.

[43] ROHLOFF M,DAS S K,HOHM S,et al.. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laserpulse irradiation sequences[J]. Journal of Applied Physics,2011,110(1): 014910,.

[44] SUN Q,LIANG F,VALLEE R,et al.. Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses[J]. Optics Letters,2008,33(22): 2713-2715.

[45] ROSENFELD A,ROHLOF F M. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse[J]. Applied Surface Science,2012,258: 9233-9236.

[46] YAMAGUCHI M,UENO S,KUMA R. Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC[J]. Applied Physics A,2010,99(1): 23-27.

[47] MIYAJI G,MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express,2008,16(20): 16265-16271.

[48] ZHOU G S,FAUCHET P M,SIEGMAN A E. Growth of periodic surface structures on solids during laser illumination[J]. Physical Review B,1982,26(10): 5366.

[49] SIEGMAN A E,FAUCHET P M. Stimulated wood′s anomalies on laser-illuminated surfaces[J]. IEEE Journal of Quantum Electronics,1986,22: 1384-1403.

[50] ZHANG H,COLOMBIER J P,LI C,et al.. Coherence in ultrafast laser-induced periodic surface structures[J]. Physical Review B,2015,92(17): 174109.

[51] YEE K S. Numerical solution of initial boundary value problem involving Maxwell′s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3): 302-307.

[52] SKOLSKI J Z P,R MER G R B E,VINCENC OBONA J,et al.. Huis in′t Veld. Modeling laser-induced periodic surface structures: finite-difference time-domain feedback simulations[J]. Journal of Applied Physics,2014,115(10): 103102.

[53] KOKHANOVSKY A A. Light scattering and remote sensing of atmosphere and surface[J]. Light Scattering Reviews,2012,6,Springer.

[54] TAFLOVE A,HAGNESS S C. Computational electrodynamics: the finite-difference time-domain method[R]. 3rd ed,Artech House,Norwood,2005.

[55] REIF J,COSTACHE F,HENYK M,et al.. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics[J]. Applied Surface Science,2002,197: 891-895.

[56] REIF J,VARLAMOVA O,VARLAMOV S,et al.. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation[J]. Applied Physics A,2011,104(3): 969-973.

[57] BRADLEY R M,HARPER J M E. Theory of ripple topography induced by ion bombardment[J]. Journal of Vacuum Science & Technology A,1988,6: 2390.

[58] REIF J,COSTACHE F,BESTEHORN M. Chapter 9 in Recent Advance in Laser Processing of Materials[M]//Ed. by J. Periere,E. Millon,E. Fogarassy. Amsterdam,Elsevier,2006: 275.

[59] VARLAMOVA O,RATZKE M,REIF J. Feedback effect on the self-organized nanostructures formation on silicon upon femtosecond laser ablation[J]. Solid State Phenomena,2010,156: 535-540.

[60] KURAMOTO Y,TSUZUKI T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium[J]. Progress of Theoretical Physics,1976,55(2): 356-369.

[61] SIVASHINSKY G I. On self-turbulization of a laminar flame[J]. Acta Astronautica,1979,6(5): 569-591.

[62] BENNETT T D,KRAJNOVICH D J,GRIGOROPOULOS C P,et al.. Marangoni mechanism in pulsed laser texturing of magnetic disk substrates[J]. J. Heat Transfer,1997,119(3): 589-596.

[63] GETLING A V. Rayleigh-B nard convection: structures and dynamics[J]. World Scientific,Singapore,1998.

[64] BUIVIDAS R,ROSA L, LIUPAS R,et al.. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback[J]. Nanotechnology,2011,22(5): 055304.

[65] HOHM S,HERZLIEB M,ROSENFELD A,et al.. Dynamics of the formation of laser-induced periodic surface structures(LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics[J]. Applied Surface Science,In Press,2015,doi: 10.1016/j.apsusc.2015.12.129.

[66] MAO X L,CIOCAN A C,RUSSO R E. Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy[J]. Applied Spectroscopy,1998,52(7): 913-918.

[67] CLAUER A H,FAIRRAND B P,WILCOX B A. Laser shock hardening of weld zones in aluminum alloys[J]. Metallurgical and Materials Transactions A,1977,8(12): 1871-1876.

[68] COLOMBIER J P,GARRELIE F,FAURE N,et al.. Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals[J]. Journal of Applied Physics,2012,111(2): 024902.

[69] BECKFORD S,LANGSTON N,ZOU M,et al.. Fabrication of durable hydrophobic surfaces through surface texturing[J]. Applied Surface Science,2011,257: 5688-5693.

[70] SCHULZE A,MAITZ M F,ZIMMERMANN R,et al.. Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes[J]. RSC Advances,2013,3: 22518-22526.

[71] ROMERO L A,DICKEY F. Lossless laser beam shaping[J]. Journal of the Optical Society of America A,1996,13(4): 751-760.

[72] MOMMA C,NOLTE S,KAMLAGE G,et al.. Beam delivery of femtosecond laser radiation by diffractive optical elements[J]. Applied Physics A,1998,67(5): 517-520.

[73] SANNER N,HUOT N,AUDOUARD E,et al.. Programmable focal spot shaping of amplified femtosecond laser pulses[J]. Optics Letters,2005,30(12): 1479-1481.

[74] BLOSSEY R. Self-cleaning surfaces-virtual realities[J]. Nature Material,2003,2(5): 301-306.

[75] ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.. Tailoring the wetting response of silicon surfaces via fs laser structuring[J]. Applied Physics A,2008,93(4): 819.

[76] BARBEROGLOU M,ZORBA V,STRATAKIS E,et al.. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science,2009,255(10): 5425-5429.

[77] VOROBYEV A Y,GUO C. Laser turns silicon superwicking[J]. Optics Express,2010,18(7): 6455-6460.

[78] GAMALY E,VAILIONIS A,MIZEIKIS V,et al.. Warm dense matter at the bench-top: fs-laser-induced confined micro-explosion[J]. High Energy Density Physics,2012,8(1): 13-17.

[79] CHARPENTIER T V J,NEVILLE A,MILNER P,et al.. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces[J]. Journal of Colloid and Interface Science,2013,394: 539-544.

[80] DUNN A,WLODARCZYK K L,CARSTENSEN J V,et al.. Laser surface texturing for high friction contacts[J]. Applied Surface Science,2015,357: 2313-2319.

[81] ABELN T,KLINK U. Laser strukturieren zur Verbesserung der tribologischen Eigenschaften von Oberfl chen[R]. Proc. of Stuttgarter Lasertage,2001.

[82] WEIKERT M,DAUSINGER F. Surface structuring, in femtosecond technology for technical and medical applications[R]//Ed. by Dausinger F,Lichtner F,Lubatschowski H. Berlin,Springer-Verlag,2004: 117-129.

[83] BONSE J,KOTER R,HARTELT M,et al.. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications[J]. Applied Physics A,2014,117(1): 103-110.

[84] VOROBYEV A Y,GUO C. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters,2008,92(4): 041914.

[85] SUGIOKA K,MEUNIER M,PIQUE A. Laser precision microfabrication[M]. Springer Series in Materials Science,2010,135,Chapter 4.

[86] VOROBYEV A Y,GUO C. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics,2008,103(4): 043513.

[87] SANCHEZ F,MORENZA J L,AGUIAR R,et al.. Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation[J]. Applied Physics Letters,1996,69(5): 620.

[88] SHEEHY M A,WINSTON L,CAREY J E,et al.. Role of the background gas in the morphology and optical properties of laser-microstructured silicon[J]. Chemistry of Materials,2005,17: 3582-3586.

[89] VOROBYEV A Y,MAKIN V,GUO C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Physical Review Letters,2009,102(23): 234301.

[90] WAN J. Tunable thermal emission at infrared frequencies via tungsten gratings[J]. Optics Communications,2009,282(8): 1671-1675.

[91] WU C,CROUCH C H,ZHAO L,et al.. Near-unity below-band gap absorption by microstructured silicon[J]. Applied Physics Letters,2001,78(13): 1850-1852.

[92] TORRES R,VERVISCH V,HALBWAX M,et al.. Femtosecond laser texturization for improvement of photovoltaic cells: black silicon[J]. Journal of Optoelectronics and Advanced Materials,2010,12(3): 621-625.

[93] KHAKBAZNEJAD A,CHEHROUDI B,BRUNETTE D M,et al.. Effects of titanium-coated micromachined grooved substrata on orienting layers of osteoblast-like cells and collagen fibers in culture[J]. Journal of Biomedical Materials Research Part A,2004,70(2): 206-218.

[94] COCHRAN D L,BUSER D,BRUGGENKATE C M,et al.. The use of reduced healing times on ITI implants with a sandblasted and acid-etched(SLA) surface: early results from clinical trials on ITI SLA implants[J]. Clinical Oral Implants Research,2002,13(2): 144-153.

[95] YADA S,TERALAWA M. Femtosecond laser induced periodic surface structure on poly-L-lactic acid[J]. Optics Express,23(5): 5694-5703.

[96] IVANOVA E P,HASAN J,WEBB H K,et al.. Bactericidal activity of black silicon[J]. Nature Communications,2013,4: 2838.

[97] MESSAOUDI H,DAS S K,LANGE J,et al.. Femtosecond-laser induced nanostructuring for surface enhanced Raman spectroscopy[J]. Proc. SPIE,2014,8972: 89720L.

李晨, STOIAN Razvan, 程光华. 超短脉冲激光诱导周期性表面结构[J]. 中国光学, 2018, 11(1): 1. LI Chen, STOIAN Razvan, CHENG Guang-hua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!